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Abstract

Complete and precise identification of types is essential to the effectiveness
of programming aids such as refactoring or code completion. Existing ap-
proaches that target dynamically typed languages infer types using flow
analysis, but flow analysis does not cope well with heavily used features
such as heterogeneous containers and implicit interfaces.
Our solution makes the assumption that programs that are known to work

do not encounter run-time type errors which allows us to derive extra type
information from the way values are used, rather than simply where those
values originate. This is in keeping with the “duck typing” philosophy of
many dynamically typed languages.
The information we derive must be conservative, so we describe and for-

malise a technique to ‘freeze’ the duck type of a variable using the features,
such as named methods, that are provably present on any run of the pro-
gram. Development environments can use these sets of features to provide
code-completion suggestions and API documentation, amongst other things.
We show that these sets of features can be used to refine imprecise flow anal-
ysis results by using the frozen duck type to perform a structural type-cast.
We first formalise this for an idealised duck-typed language semantics and

then show to what extent the technique would work for a real-world lan-
guage, Python. We demonstrate its effectiveness by performing an analysis
of several real-world Python programs which shows that we can infer the
types of method-call receivers more precisely than can flow analysis alone.
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1 Introduction

Users of statically typed languages are accustomed to development envi-
ronments that ease the programming burden by suggesting, warning and
partially automating the process. Although environments for dynamically
typed languages try to provide these same features, they tend to fall short
because techniques that work well with statically typed languages do not
cope as well with the increased degrees of freedom allowed by dynamic typ-
ing. This freedom permits greater flexibility but reduces the assumptions
we can make about the run-time behaviour of programs, assumptions upon
which programmer assistance critically depend.
At the heart of the problem lies static type inference: how to conserva-

tively approximate the run-time values of an expression without executing
the program. Programming environments rely on these approximations in
order to reason about a program and ideally they should be both precise,
so as to help the user as much as possible, and sound, so as to not mislead
the user. However, that is not possible because any tractable, sound, static
analysis must be imprecise to some degree [25, 31]. The aim, then, is to
make an analysis as precise as possible because the closer it approximates
reality the better the quality of assistance.
In the absence of a static type system, dynamically typed language tools

typically rely on flow analyses to infer types. As general program analyses,
rather than program verifications, they impose no restrictions on program
behaviour, which means they work in a dynamically typed setting [41].
However, they are more effective with statically typed languages because the
interface types from the static type system limit the effect of any imprecise
concrete types inferred by the flow analysis [42].
The question becomes: is it possible to use interface types to achieve the

same effect in the absence of a static type system? In this thesis we show
that, subject to some caveats, it is possible for duck typed languages.
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1.1 Duck typing

Duck typed languages, which include Python, Ruby and Smalltalk among
many others, are dynamically typed languages characterised by their run-
time type checks, which test a value’s capabilities instead of its identity—the
so called duck test: “If it looks like a duck and quacks like a duck, it must
be a duck”.1 There are no accepted definitions of duck typing, so for the
remainder of the thesis we assume the following:

Duck typing A dynamic, lazy form of structural typing. Dynamic because
safety checks occur at run time. Structural because a value’s compat-
ibility is decided solely based on its interface. Lazy because compat-
ibility is checked as late in the execution as possible using as little of
the interface as possible.

Although duck types are interface types, they are dynamic, not static. The
types do not exist until run time and are not valid beyond the single exe-
cution that emitted the series of checks. Fortunately, unlike concrete types,
interface types need not correspond to actual values, so we can obtain a
sound static approximation of a program’s duck types by factoring out only
those parts of the interface that will definitely be checked on any run of the
program.

Freezing ducks Our first contribution is a two-part static analysis for
duck typed languages that extracts a static subset of an expression’s duck
type. The interface types it produces are sets of features, such as method
calls, that the values at each expression must possess if the program is to
pass all run time duck tests. Notably, the analysis is flow sensitive (sec-
tion 2.5.4) meaning it infers a separate type for each expression, which is
essential for a dynamically typed language where the programmer is free to
coordinate polymorphism themselves (section 1.3).
The first part of the analysis, inspired by the work of Adams et al. [1]

for Scheme, collects observed features of an expression: features that are
duck-tested for, and found to be present, in every value that flows to the
expression before it reaches the expression. Given an assumption that val-
ues have static interfaces and that failing duck tests halt execution, these

1http://docs.python.org/glossary.html#term-duck-typing.
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features are guaranteed to be present in any value at that expression, under
all circumstances. The analysis is sound.
The second part of the analysis is a novel application of success types,

originally for Erlang by Lindahl and Sagonas [23]. It collects required fea-
tures of an expression: features that are duck tested for, but not necessarily
found to be present, in every value that flows to the expression after it
reaches the expression. Given the same assumption of static interfaces,
these features are guaranteed to be present in any value at that expression
if the program never encounters a failing duck test. The analysis is sound
for a well formed program.
Using both parts of the analysis together renders the most precise inter-

face type, but certain applications that must reason about the behaviour of
potentially ill-formed programs, such as type checkers and compilers, should
omit required features from the frozen duck type as the result is not sound
under those circumstances. However, for our application—programmer
assistance—we assume the input program is well formed and use both parts
of the analysis.

1.2 Contraindication

Our second contribution is contraindication: an approach that combines the
frozen duck types with the concrete types from flow analyses by using the
former to down cast the latter, just as the interface types from a static type
system do for flow analysis in a statically typed language. The result is a
more precise type than is possible using either frozen duck types or flow
analysis in isolation.

1.3 Coordinating polymorphism

To illustrate the problem, let us consider an example in the duck typed
language Python that, although well formed, takes advantage of dynamic
typing in a way that makes a precise concrete type uncomputable by flow
analysis.

1 class A:
2 def wibble( se l f ) : . . .
3 class B:

11



4 def foo( se l f ) : . . .
5 class C:
6 def foo( se l f ) : . . .
7 def bar( se l f ) : . . .
8

9 i f x . feminine () :
10 p = A()
11 else i f x . masculine () :
12 p = B()
13 else :
14 p = C()
15

16 i f x . neuter () :
17 e = p. foo()
18 f = p. bar()

The challenge with dynamically typed code like this is that static analysis
is unable to precisely predict the run-time paths through the code; it must
over-approximate the possibilities and must then attempt to reason about
situations that never occur in practice. At best this results in imprecision
in the inferred type, but at worst the situation becomes fatally conflicted
and the analysis must abandon inference and return a trivially pessimistic
answer. Our results have shown this worst-case scenario happens almost
half the time for a context-insensitive flow analysis (chapter 7); it is not an
edge case.
In this example, the type of the object in p is the stumbling block. It

depends on the run-time value of x and so can contain instances of classes A,
B or C. However, at lines 17 and 18, p can only contain an instance of class
C as no path that passes through lines 10 or 12 can take the true branch
of the conditional at line 16. This fact is obvious to the programmer and
something they, presumably, relied on when writing this code, but a flow
analysis would need to establish

not(x.feminine() or x.masculine()) ≡ x.neuter()

for all runs of the program, which, in the general case where results may
even depend on input, is uncomputable.
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The issue stems from the nature of dynamically typed languages that per-
mit the programmer to freely coordinate polymorphism along run-time paths
using arbitrary data and control structures. A static type system, on the
other hand, tightly regulates all polymorphism such that even the statically
over-approximated paths are provably type safe. Any deviations from the
type system’s regulations must be forced by the programmer through the
use of casts, which may fail at run time. A side effect of type systems is the
rejection of a subset of well-formed programs [31], including this example.
Development tools for dynamically typed programs cannot afford the lux-

ury of being able to reject existing working programs. We must use tech-
niques that accept “arbitrarily objectionable” [41] programs.

1.4 Flow analysis

Flow analyses use data-flow information to conservatively approximate the
sources of the values that can reach an expression [27, 42] without the re-
strictions of a static type system. As general program analyses, rather than
verifications, flow analyses can be used to infer types for all programs, even
those whose type safety cannot be verified. This makes them a common ba-
sis for type inference in development tools for dynamically typed languages.
The success of a flow analysis relies on being able to trace data-flow

paths between an expression and all the sites where its values may have
been created, namely constructors, constants or allocations. As program
size increases so does the potential for imprecision to obscure this data-flow
connection. Nevertheless, flow analyses are sound and, as such, err on the
side of caution and infer types that over-approximate values in a program.
A flow analysis might infer the set of possible types of p at lines 17 and 18,

denoted Jp17K and Jp18K, as {A,B,C}. This type is conservative but it is not
precise.
While the loss of precision in the inferred type of p is inconvenient, the

knock-on effect for Je17K and Jf18K is truly fatal. The type of values that
arrive in e and f depend on the return types of the calls to p.foo() and
p.bar() that, in turn, depend on Jp17K and Jp18K. But Jp17K and Jp18K contain
classes that do not have methods foo or bar so, the flow analysis, being a
conservative analysis, must return the trivially pessimistic result often called
> and pronounced ‘top’.
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1.5 Feature analysis

Even when flow analysis fails, there is other information an analysis can
consider to regain some precision: information about how a value is used
rather than where it came from.
Firstly, a value reaching an expression must have passed any duck tests

to which it was subjected. The first part of our feature analysis uses the
duck tests, which it can guarantee will always happen, to infer a set of
observed features for the expression. In the example, any value reaching
p18 will already have been tested for the presence of method foo when the
value passed through line 17, so having a method foo is a feature of p18. The
important point is that it is not just possible that the value appearing in p18

will have passed a check for foo before it arrives there, it is guaranteed. No
matter how freely the user has coordinated polymorphism in their program,
the features inferred by the first part of the analysis will always be present
because only guaranteed checks are considered. The analysis is sound.
But values in any sensible program must also pass the duck tests to which

they are subjected after arriving at an expression. The second part of our
feature analysis considers duck tests that inevitably will be executed on
any value that reaches the expression: the set of required features for the
expression. In the example, a value reaching p17 will be tested later for the
presence of method bar when it passes through line 18. This time it is not
guaranteed that the values appearing in p17 will have feature bar; the duck
test on line 18 could still fail. However, assuming the user coordinated their
polymorphism correctly—the program is well formed and never fails a duck
test—the inferred features are once again guaranteed, and the analysis is
sound.
This last assumption is unusual and sets us apart from most work on static

typing, which is aimed at type checking, type safety, compiler optimisation
and other applications that must accept ill-formed programs. However, we
argue that, in our domain of programmer assistance, an assumption that
the code is well-formed is reasonable, standard and fruitful.

Reasonable because a project cannot reach even moderate maturity if still
encountering run-time type errors. Even during development, when
some code may not be correct or complete, the majority of the system
will still be type correct. The quality of the assistance available should

14



not have to be compromised for the sake of small sections of new and
untested code.

Standard because even in statically typed languages, development environ-
ments do not promise correct assistance if the code does not pass the
type checker. Refactoring engines, for example, refuse to operate en-
tirely under those circumstances. The difference here is simply that
we do not have a type checker to warn the user of the problem be-
forehand, a problem that is not caused by nor exacerbated by our
assumption.

Fruitful because our results show the clear benefits of using required-feature
analysis over an analysis that considers observed features alone (chap-
ter 7).

Together, the observed and required features inferred by the two analyses
form an expression’s frozen duck type. These are already useful in their own
right. For example, a development environment can present the user with
a set of features for an expression, and the user can rely on those features
always being available in the values at that expression. Or an environment
can reverse-engineer API documentation from the source. The tool can
document (perhaps interactively) that an argument being passed to an API
must have at least the inferred required features.
But our main aim is to use these types to recover the casts that would

have been present in a statically typed language and use them to refine the
results of a flow analysis.

1.6 Recovering casts

The concrete types inferred through flow analysis are nominal whereas the
frozen duck types are structural interface types. But the two different no-
tions of type can be combined when the nominal type is a set of concrete
types whose definitions constrain the set of features their values support. For
example, where values are created through named value-classes and those
classes declare all the features the value will ever support, the nominal and
structural types are related by the sets of features they contain.
Looking at the example again, we can use observed features—the first

part of our duck-type analysis—to reduce the nominal type Jp18K to the

15



subset of classes inferred by flow analysis that mandate the presence of all
the observed features of p18, in this case just method foo. The inferred
concrete type is down cast to the set of classes that all define a method foo.
In this case:

Jp18K = {A,B,C}︸ ︷︷ ︸
from flow analysis

∩
from observed features︷ ︸︸ ︷

{τ | τ ∈ > ∧ foo ∈ features(τ)}

= {B,C}

where features(τ) is the set of methods defined in class τ and > is the set
of all possible classes.
If we now include required features as well, we can down cast the inferred

type further as long as we are happy to assume the program does not en-
counter a failed duck test. If our example is a well-formed program, the
value of p18 must not only have a method foo but also a method bar, given
the call to bar at line 18. Thus, any type not defining bar can also be
eliminated from Jp18K.

Jp18K = {A,B,C}︸ ︷︷ ︸
from flow analysis

∩
from observed features︷ ︸︸ ︷

{τ | τ ∈ > ∧ foo ∈ features(τ)}

∩
from required features︷ ︸︸ ︷

{τ | τ ∈ > ∧ bar ∈ features(τ)}

= {A,B,C}︸ ︷︷ ︸
concrete type

∩
interface type︷ ︸︸ ︷

{τ | τ ∈ > ∧ {foo, bar} ⊆ features(τ)}

= {C}

The analysis for Jp17K would proceed similarly except that both foo and bar
would be required features of p17 and there would be no observed features.
Imagining, for a moment, that the source code could be modified to make

our casts explicit, the frozen duck types might cast the types structurally
like so:

16 i f x . neuter () :
17 (( : foo , : bar) p) . foo()
18 (( : foo , : bar) p) . bar()

16



which, when combined with the concrete type through contraindication,
might become:

16 i f x . neuter () :
17 ((C) p). foo()
18 ((C) p). bar()

1.6.1 Soundness

Contraindication constrains the concrete types inferred by flow analysis us-
ing the interface types of our frozen duck types. Concrete types produced
by flow analysis over-approximate the actual values at an expression while
our frozen duck types, being interface types, under-approximate the actual
interfaces of the values. By contraindicating only those members of the
concrete type whose interface is incompatible with the interface type, we
arrive at a result that is still sound.

1.7 Contributions

• We adapt the work of Adams et al. [1] to suit a duck typed language
semantics (section 3.5) and generalise their approach in our observed
features to permit non-halting definitions of run-time type errors (sec-
tion 3.7).

• We present an analysis to approximate observed features based on
standard intra-procedural dominator and kill analyses (section 3.10).

• We adapt observed features in the spirit of success typings [23] to be-
come required features, which consider operations due to occur rather
than those that will already have happened (section 3.8).

• We present an analysis to approximate required features based on
standard dominator and kill analyses (section 3.10).

• We present contraindication, a technique to refine concrete type in-
ference by down casting the inferred types using structural interface
types in a class-based language (section 3.6).

• We present evidence of the improved type precision by applying con-
traindication to a range of real-world programs (chapter 7).
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Outline

Chapter 2 Related work: We explore the existing work in the field, both
work that we build upon and work whose goals coincide with ours but
whose approach is separate.

Chapter 3 Approach: We develop the theoretical foundations of our ap-
proach by combining aspects of three different pieces of work, adapting
them, when necessary, to better suit a duck typed language semantics.
We outline the basis of a practical approach to calculate a conserva-
tive approximation of frozen duck types and explain how to use them
for contraindication in a class-based language.

Chapter 4 Formal presentation: We formalise observed and required fea-
tures as well as contraindication. We prove that these are sound and
define the necessary prerequisites that make them so. They are, how-
ever, uncomputable, so we strengthen the definitions in stages to re-
sult in an approximation that is computable using an intra-procedural
control flow graph. We prove that this approximation is sound.

Chapter 5 Practical language: We explore the challenges and compromises
of applying the approach to a practical language by mapping the con-
cepts to the semantics of Python.

Chapter 6 Implementation: We describe the implementation of our ap-
proach that we use to produce the results in chapter 7. This imple-
mentation includes a context-insensitive flow analysis whose results
we refine.

Chapter 7 Evaluation: We study the effect of contraindication on a set of
open-source Python programs. As well as presenting the improve-
ments in precision, we verify our result by manual inspection of a
sample. The chapter ends with a discussion of the threats to the
validity of this study.

Chapter 8 Conclusion: We conclude with a discussion of open problems,
new avenues of research and further work we hope to do. In particular,
we discuss our desire to integrate the analyses into an IDE for Python.
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2 Related work

In this chapter we explore the existing work in the field. We begin with
two categories of work that address the same issues as this thesis but whose
approaches are notably different. The first relies on users adding type an-
notations to assist static analysis, while the second captures actual types
from running programs. We aim to infer types statically without needing
the user to add type annotations, so in the rest of the chapter we explore
the work that confronts that particular challenge.
We consider type systems designed to ensure type safety, that reject some

working programs, as well as those that incorporate run-time type checks
into the system and so accept all programs. Then we describe a family of
general program analyses commonly used for type inference in dynamically
typed languages and for optimisation in statically typed languages. We
demonstrate some of the weaknesses of using this kind of analysis with dy-
namically typed languages and explain why statically typed languages are
less vulnerable. Finally, we discuss work that recovers some of these advan-
tages by exploiting other sources of type information in dynamically typed
programs. The approach we develop in this thesis builds on this work by
adapting it to duck typed languages, a popular class of dynamically typed
languages, extending the sources of information used to improve precision
and then proving that the approach yields sound types for well-formed pro-
grams.

2.1 Annotations

Some type inference approaches for dynamically typed languages require
the user to add type annotations to their source code. Although type an-
notations are common in statically typed languages, such as C++ or Java
where every variable and parameter must have its type declared the first
time it appears, most dynamically typed languages do not require them.
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We believe that programmers will not be willing to annotate existing code
bases, especially as our type inference is meant to reduce, not increase, their
workload. Therefore we discuss the work here for the sake of completeness
but we do not base our approach on it. Later we will cover work that infers
types from unmodified dynamically typed code.

2.1.1 Gradual typing

As the name implies, gradual typing [38, 39] eases the transition from un-
typed to typed programming by letting the user mix annotated and unanno-
tated code. Gradual typing reconciles the dynamically typed and statically
typed parts of the program by inserting checked casts at the interface be-
tween statically and dynamically typed portions of the code.
Gradual typing is similar to soft typing (section 2.3.2) but only statically

type checks code that has type annotations and treats unannotated code
dynamically. When a value originates in dynamically typed code, a run
time check occurs before it is used in a statically typed context [49]. Soft
typing, on the other hand, attempts to statically type check all code and
only inserts a run time type check if that fails.
DRuby [14] is a type checker that applies gradual typing to a duck-typed

language. As well as statically checking annotations, DRuby attempts to
infer the types of unannotated code using the extra information the anno-
tations provide.

2.1.2 Like types

Like types are a recent development introduced in the language Thorn [49].
They improve on gradual typing by making it explicit when a variable could
be wrapping a dynamically typed value that, therefore, might fail a run-
time type check. This intermediate type integrates the statically typed
and dynamically typed code without the former losing its robustness and
performance advantages nor the latter losing its flexibility.
Like-typed variables have the same behaviour as the statically annotated

code in a gradual type system: any value can be assigned to them as though
they were dynamically typed while their uses are both statically and dynam-
ically checked. Like types are structural, so the uses are checked to make
sure they are compatible with the like type’s interface alone; missing fea-
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tures cause a static type error. And, as with gradual typing, those statically
checked uses can still fail at run time if the value in the variable, which is
always assigned dynamically, does not support the features in question.
The advantage over gradual typing is that like types are a third, distinct,

category of type [49] which allows static types to continue to work exactly
as normal with all the usual advantages such as guaranteed type safety and
optimisation.
Wrigstad et al. present like types in the context of a new language, but

retrofitting them to an existing dynamically typed language would require
modifications to the language and for the user to annotate any existing code
they wanted to benefit from the like type.
When comparing like types with soft typing (section 2.3.2) the latter

can be thought of as inferring where the like type annotations must be
inserted. The trade off is that explicit like types allow for unequivocal
type errors, whereas soft typing only produces warnings and does so every
time a dynamic check is used, limiting its practical usefulness.

2.2 Run-time analysis

A very different way of obtaining type information is to do it at run time
when it is, arguably, most natural for a dynamically typed language [18].
Furr et al. [14] augment their DRuby static analysis (section 2.1.1) with
run-time profiles taken from instrumented executions of the test suite.
Haupt et al. [18] harvest types by executing the test suite one instruction
at a time and inspecting the state of the interpreter in between.
Such dynamic analyses are a valid and effective solution to the problem of

providing better programmer assistance. They are even able to assist in the
face of pathologically dynamic features such as eval and other features that
execute arbitrary data as code. But such analyses perhaps best complement
static type inference rather than replace it. In particular, they rely on the
presence of a test suite to exhaustively exercise the code. If a particular
value appears at an expression during a real execution, but did not appear
during testing, the collected types will be incorrect.
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2.2.1 RPython

A notably different use of run-time type analysis is RPython [4] an interme-
diate language that forms part of the tool chain used to implement PyPy,1

the Python implementation of Python. It is a restricted subset of Python
that is entirely statically typed.
The interesting aspect is that it takes as input “live Python objects” from

a running instance of the Python interpreter during an initialisation phase.
After that point, all type information is available, so the initialisation phase
is allowed to use all the dynamically typed features Python offers.
This approach is unsuitable for our domain of general program analysis,

as we cannot restrict the dynamic behaviour of the input program to an
initialisation phase.

2.3 Type systems

Type systems are typically used to guarantee the absence of certain be-
haviours statically, both for languages with explicit type annotations and,
through type inference, for languages without [4,6,10,27,28,31,32,35]. The
latter category are most interesting for us, as dynamically typed languages
also, typically, lack type annotations.

2.3.1 Constraint-based type inference

Type constraints are a basis for type inference that record the dependencies
between types of terms that are then solved to infer a type for the terms
using a unification algorithm [31]. One of the best known unification al-
gorithms is algorithm W by Milner for ML [12], which is efficient and, if
a given term is typable, always infers the most general type for it. How-
ever, unification requires that there be a single type for all appearances of
a variable, so would be unable to infer a type for p in our example from
chapter 1.
This is not surprising, as static type checking inevitably excludes some

programs that would not exhibit the excluded behaviour at run time, sim-
ply because the checker could not generate a proof [31]. When statically

1http://pypy.org/
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inferring types for a dynamically typed language, we do not have the lux-
ury of rejecting some working programs, since the technique must accept all
working programs if it is to be faithful to the semantics of the language.
However, some work on type systems has tried to address the issue by

incorporating run time checks into the type system.

2.3.2 Soft typing

Cartwright and Fagan introduced soft typing [11], an approach to type
systems designed to cope with dynamically typed programs by inserting
run-time checks when a program fails to statically type check. Unlike a
traditional type system, a soft typing system never rejects a program if it
fails to infer a static typing for it. Instead, it inserts “narrowers” in the
code to “transform arbitrary programs to equivalent programs that type
check” [11] when necessary.
Narrowers are type casts and indicate where run-time checks must be

inserted into the program. The effect of the narrower is to resolve contra-
dictions encountered by the inference algorithm by blindly converting the
source type to the destination type and relying on the run-time checks to
catch situations where the types are truly incompatible. Exactly how this
narrowing is done depends on the particular static type system upon which
the soft typing is built. Cartwright and Fagan [11] use an algorithm similar
to algorithm W [12], so the contradictions are failures to unify a set of type
constraints.
Soft typing is similar to gradual typing [38, 39] (section 2.1.1): both rec-

oncile dynamically typed and statically typed parts of the program by in-
serting checked casts where necessary. But soft typing tries to infer static
types for as much of the program as necessary in the absence of any type
annotations. If it fails to do so, it assumes the code is dynamically typed,
with the consequence that it cannot detect type errors.
There are similarities between our work and soft typing. Both techniques

reason about untypable code. Our analysis assumes the code is type correct
and works out how that came about. Soft typing accepts that the code might
not be type correct and works out how to check that it is. Both techniques
down cast types, but they do so with very different aims in mind.
Soft typing has two main aims: to optimise a program by reducing the
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number of run-time type checks and to warn the programmer of potential
type errors [11]. Both run-time type checks and potential type errors occur
precisely where casts are inserted in the type system, so the fewer casts a
soft typing algorithm inserts the faster and more type safe a program will
be.
Our approach, contraindication, refines imprecise types by down casting

them, such that they become consistent with the operations being per-
formed: the type resulting from the cast would have made the program
pass a type check.

2.3.3 Hybrid typing

A variation on soft typing, hybrid typing, restores the ability for the type
system to type check a program by dividing expressions into three classes:
those that are statically type correct, those that are statically type incorrect
and those that must be dynamically checked. The dynamically checked ones
can continue to be warnings for the programmer, but the statically type-
incorrect category are unequivocally type errors.

2.4 Success typings

Success typings are a very different kind of type, introduced by Lindahl and
Sagonas [23] in the context of Erlang, a dynamically typed, functional lan-
guage. Unlike typical static types, which guarantee type safety and therefore
are uncomputable for a dynamically typed language, success types guaran-
tee that any use contradicting them will definitely lead to a run-time type
error. They are particularly suited to dynamically typed languages as they
require no type annotations and are always sound for any well-formed pro-
gram. In particular, they will never reject a well-formed program but might
accept ill-formed programs, making them suitable for type checking but not
type safety.
Our required features (see sections 1.5, 3.8 and 4.5) are similar to success

typings but, unlike the Lindahl and Sagonas approach, we do not (currently)
use them for type checking. Instead, we assume a well-formed program that
will not encounter a run-time type error and use them to detect where the
flow analysis inferred too wide a type. The way we calculate our required
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features is very different from Lindahl and Sagonas as they operate in the
context of an Erlang-style purely functional programming language with
immutable variables, while we generalise our approach to include imperative
languages with reference semantics and mutable variables.

2.5 Flow analysis

Flow analyses are a family of general program analyses with a long history
in computing [3]. They have been used for compiler optimisation [8, 36]
(call graph construction [16, 46], closure conversion [44], alias analysis [5,
45]), safety checking [28] and type inference [13]. They have been used for
procedural [5, 45], functional [36] and object oriented languages [26, 28, 32,
46], both statically [13, 16, 48] and dynamically typed [8, 26, 28]. There are
a wide variety of implementation strategies, but they all share the same
basic idea that properties of a program can be predicted statically by over-
estimating the data flow in a program.
The analyses model data flow in a program by simulating its execution,

using abstract values to approximate program state. They either start with
an assumption that all values can flow everywhere and apply rules that
reduce this by proving a flow impossible or they assume nothing flows any-
where and apply rules that provide evidence that a flow is possible [15,16].
Somewhat confusingly, despite being data-flow analysis, they are often

called CFAs (control flow analyses) due to the circular nature of data flow
and control flow in higher order languages. The acronym is often used with
a prefix to identify a specific variant (see section 2.5.1) of which there are
many.

2.5.1 Variants

Like all static analyses, flow analyses, at best, approximate actual program
behaviour. As flow analyses are so generally useful, a large amount of work
has been done to make the approximation as precise as possible.
There are two main flavours of implementation.

Propagation Also called Andersen’s analysis [5], dependencies between ex-
pressions are inclusion constraints, which accurately model the direc-
tion of data flow.
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Unification Also called Steensgaard’s analysis [45], dependencies between
expressions are equality constraints, which ignore the direction of data
flow.

Sets of equalities are easier to solve than sets of inclusions [22, 25], but the
result is less precise because the constraints no longer model the actual data
flow as accurately.
All analyses inevitably make compromises because no static analysis can

precisely model an arbitrary program’s true behaviour. When the analyses
are used for type inference, the approximations typically manifest as impre-
cise modelling of polymorphism. Different compromises affect the way the
analyses approximate different aspects of a program’s behaviour and in the
rest of this section we discuss some approximations (characterised, as usual
in the literature, by their complement: what the analyses are sensitive to)
and demonstrate how they manifest themselves as over-approximation in
the modelling of polymorphism.
The simplest type of flow analyses are known asmonovariant because they

maintain one abstract value per syntactic element [43]; some analyses [46]
maintain even fewer. When the analysis is being used for type inference, this
means that everywhere the abstract value might flow must share the same
type, which must over-approximate the actual types of all the actual values
represented by that abstract value. The result can be fairly catastrophic
because very general types flood the analysis. We describe this in greater
detail in section 2.5.6.
The effect is not so severe in statically typed languages as the existing

static types from the type system can be used to bound the imprecision [41]
(see section 2.6) but it makes monovariant type inference less suitable for
dynamically typed languages.
The syntactic elements are representations of memory locations and, de-

pending on the programming language, may include parameters, fields and
mutable variables. Each one may be polymorphic, but rarely arbitrarily
so. Blindly summarising the polymorphism with a single abstract variable
exaggerates the polymorphism and reduces the precision of the result.
Now we look at each of these syntactic elements, how summarisation

exaggerates their polymorphism and what can be done about it. Parame-
ters (parametric polymorphism) are dealt with by context sensitivity (sec-
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tion 2.5.2), fields (data polymorphism) by object sensitivity (section 2.5.3)
and variables by flow sensitivity (section 2.5.4). In section 2.6 we show how
static type systems bound the problem, making it less apparent in statically
typed languages.

2.5.2 Context sensitivity

Procedure calls act as natural summarisation points in a flow analysis. Pro-
grammers call a procedure from more than one place in order to share some
behaviour between the call sites. Context insensitive analyses reflect this
shared behaviour by analysing each procedure only once regardless of the
call sites. The result of a function is modelled by a single shared abstract
value, likewise for variables within a procedure.
But, although procedures may share behaviour, that does not imply the

behaviour is identical on every call. Maintaining only one set of abstract
values per procedure leaves a context insensitive analysis unable to model
these differences. When used for type inference, the result is that all calls
to a function will always be given the same type, as will all parameters in a
procedure.
The simplest example of the problem is the identity function, shown here

as f :

let f = λx.x in

let g = λy.f y in

let h = λz.λw.z in

f g h

Here two different values flow to x, the parameter of f , first the abstraction
g, which has type α→ α, then abstraction h, which has type α→ (β → α),
via the body of g. A context insensitive analysis would combine these and
assign x in f the type α→ α∪α→ (β → α) and the imprecision would flow
through the program, first to the inferred type of f—now α → α ∪ (α →
(β → α) → (α → α ∪ α → (β → α)) rather than α → α and then to the
type of g.
Alternatively, in an object-oriented language like Python:

class A:
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. . .
class B:

. . .

def identity (x) :
return x

a = A()
y = identity (a)
b = B()
z = identity (b)

a context insensitive analysis uses the procedure body as the unit of sum-
marisation and would infer that, while a and b were monomorphic, y and
z are polymorphic and may be instances of A or B. The problem is that
the parametric polymorphism of parameter x has been exaggerated by the
summarisation of all calls to identity. Across call sites, x is polymorphic but
at an individual call site it is actually monomorphic. Notice how the values
went into the function more precise than they came out. Below we describe
a family of context sensitive analyses (k-CFA) [36] that model monomor-
phic call sites for a polymorphic procedure and, up to a certain call depth
(k), even monomorphic calls at a polymorphic call site. Another analysis,
CPA [2], can do the latter for all call sites regardless of depth.
The effect can be particularly acute if the function is a commonly used

system function and a variation of the identity function, for example a filter
function. The output type at any call site becomes polluted with the input
type at every call site.
Static types improve the situation because the type checker will have

assigned an interface type to the result of the identity function that is suf-
ficiently precise to make the program well typed. In an explicitly-typed
language such as Java, this may require the user to insert explicit casts that
provide the extra type information (see figure 2.1 on page 34). We discuss
this in more detail in section 2.6.
Context sensitive analyses regain some precision by distinguishing differ-

ent calls to the same procedure by an approximation of their calling context,
called a contour [15]. Calls to the same procedure with different contours

28



are given distinct abstract values whilst calls with matching contours share
abstract values.
Exactly what form this context takes varies between analyses. Ryder [34]

and Grove et al. [16] include detailed surveys of the variations. Below we
cover two kinds of context, but these are by no means mutually exclusive.

Call strings: Call string contours are a representation of the call stack
leading to the call site [15,16,34]. A true representation of the call stack may
be infinite, so the representation is approximated by limiting the number of
levels it models. A well-known family of context sensitive analyses, k-CFA
by Shivers [36], maintains k levels of contour. Maintaining this separation
is still hugely expensive [16, 46] and they do not scale for any k > 0 [37].
0-CFA is the monovariant (context insensitive) member of the family.

Parameter state: These analyses use some encoding of the state of the
values passed to procedure at a call site [15]. In an object-oriented language
this can include the state of the receiver, which is passed implicitly to the
procedure.
A notable analysis in this category is Agesen’s Cartesian Product Algo-

rithm (CPA) [2] which maintains a separate contour for every combination
of arguments that are passed at a call site. It avoids redundant analysis
inherent in the call strings approach because different call sites that pass
arguments of the same type—the common case—share a contour. Preci-
sion is also better than the k-CFA family because every procedure body is
analysed separately with monomorphic parameters; a call site that remains
polymorphic after k-level expansion causes the k-CFA analyses to analyse
the receiver body with polymorphic (i.e., imprecise) parameters [2].

2.5.3 Object sensitivity

As well as polymorphic parameters, languages with records—notably the
object-oriented languages—can have polymorphic fields [31]. This is known
as data polymorphism [26,43,48]. Basic analyses summarise all instances of
a class with a single set of abstract values [34,48] and a corresponding loss
of precision. Oxhøj et al. [26] found such an analysis [28] for the duck-typed,
object-oriented language Smalltalk to be “next to useless” [26] in practice.
For example:
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class Bus:
. . .

class Bicycle :
. . .

class Person :
def __init__( sel f , transport ) :

se l f . transport = transport

red_bus = Bus()
jack = Person(red_bus)
jacks_bus = jack . transport

shiny_bike = Bicycle ()
j i l l = Person(shiny_bike)
j i l l s_bike = j i l l . transport

The transport field of the Person class is polymorphic, but not within an ob-
ject instance. However, an object-insensitive algorithm uses the class as the
unit of summarisation and will infer that both jacks_bus and jills_bike have
the same type {Bus, Bicycle}. As with the example of parametric polymor-
phism (section 2.5.2), this causes the data polymorphism to be exaggerated.
Notice how the modes of transport went in more precise than they came out.
Summarising the fields by class meant that the analysis lost the ability to
reason precisely about the field instances and, instead, mixed the polymor-
phic possibilities arbitrarily when, in fact, only if Jack had chosen to ride
his transport polymorphically should the full combination of possibilities
apply.
The effect is particularly acute for heterogeneous collections, which are

effectively instances of a class with an unbounded number of numerically
named fields (see section 2.5.6).
More advanced (and expensive) analyses [26, 48], which we dub object

sensitive here, distinguish different allocation sites (constructor calls) of the
same class and maintain separate sets of abstract values for each. Spoon
and Shivers [43] achieve a similar effect by tagging constructor calls with
the call site and relying on parametric polymorphism (see section 2.5.2) to
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disambiguate them. As usual, the increased sensitivity has an associated
cost: a worst-case quadratic increase in the case of Oxhøj et al. [26], for
example.
Statically typed languages can achieve the same effect without resorting to

an object-sensitive analysis by relying on static types from the type system.
In Java, for instance, these would either come from casts (figure 2.2 on
page 35) or from generics that make the data polymorphism explicit.

2.5.4 Flow sensitivity

A flow insensitive analysis takes no account of the order of execution [25].
Typically this means that the results for all appearances of the same vari-
able are combined. This is the norm for flow analyses used for type inference
in statically typed language. Even in Whiley [30] which does flow-sensitive
structural typing, the flow sensitivity is limited to branches controlled by ex-
plicit type checks; other situations where arbitrary conditionals coordinate
the polymorphism are not reflected in the type system.
Ryder [34] suggests that the impact of flow sensitivity is minimal, at

least for object-oriented code, as methods tend to be small, and that the
scalability problems have led to context sensitivity being favoured.
While this may be the case, we believe duck typed languages benefit

more than statically typed languages because implicit interfaces that vary
polymorphically along different paths through the same function are not un-
common, and these language also permit variables to be reused for unrelated
types within the same function.

Analyses can combine aspects of these (and other) dimensions arbitrar-
ily [15,16] to increase precision at the cost of performance. The combination
providing best precision for a certain cost will vary by problem domain, lan-
guage, programming style and code complexity [16].

2.5.5 Demand driven

Demand-driven analysis stems from a realisation that, for certain tasks, only
a small portion of the results are needed at any one time and an analysis can
make better use of resources if it only analyses the subset of the program
that has bearing upon those results. This subset is discovered as the analysis
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progresses and the analysis incrementally requests solutions to goals, which
may, in turn, request solutions to more goals [41,42].
The approach is particularly suited to interactive applications such as

development environments, where the user only needs analysis of the code
with which they are interacting at any given time. For a more detailed
description, see section 6.2.

2.5.6 >

Our study of a monovariant flow analysis on a range of open source Python
programs in chapter 7 shows that an average of 47% of the expressions were
typed as >, and that figure did not drop below 42% for any program. It may
seem strange that an analysis that has all code available to it and which
has no timeout on its execution would, essentially, abandon analysis almost
half the time. The cause is a conspiracy of dynamic typing characteristics.
As we describe in detail in section 2.5.1, any tractable flow analysis ap-

proximates real execution and each approximation not only introduces im-
precision but magnifies imprecision originating elsewhere. One particularly
egregious example in dynamically typed languages are heterogeneous con-
tainers, which cause any value flowing into them to escape from the point
of view of an object-insensitive analysis. Consider:

x = (1 , "Hello" , A())

Here x references a three-item immutable tuple, where each item has a dif-
ferent type: an integer, a string and a user-defined class instance. Without
object sensitivity to distinguish this tuple instance from all others (see sec-
tion 2.5.3), an item in a tuple must share a type with the other items at the
same index in every other tuple.
But it gets worse, as many common Python collections are mutable:

x = [1 , "Hello" , A()]
x . sort ()

Even object sensitivity cannot rescue flow analysis in this example. Where
the three objects end up is decided by arbitrarily complex code in the three
objects. This is undecidable, so the analysis must assume the values escape
and any value pulled from a heterogeneous container is inferred as having
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type >. The fact that heterogeneous containers are used heavily in Python
programs goes some way towards explaining the high figure we quote above.

2.6 Bounding flow analyses

Flow analyses for higher-order languages do not scale well [34,37,46]. Mono-
variant propagation-based analyses, like Shiver’s 0-CFA [36], that must cal-
culate a dynamic transitive closure have cubic complexity in the size of
the program. The cost of polyvariant analyses varies depending on how
many extra abstract values they maintain. The k-CFA family are provably
EXPTIME-complete for functional languages [24] and O(nk+3) for object-
oriented languages [29].
Cheaper and less-precise algorithms exist. Tip and Palsberg [46] question

whether 0-CFA and above provide sufficient benefit to justify their cost.
And yet the precision of 1-CFA—even more expensive at O(n4)—was found
to be “next to useless” [26] for a dynamically typed language. Spoon and
Shivers [43] observe that analyses of statically typed languages, like that by
Tip and Palsberg [46], can be precise without the expense of a polyvariant
analysis because the static types from the type system bound the effect of
any imprecision in the flow analysis, in particular, through the use of casts.
In other words, when the flow analysis infers an imprecise concrete type,
but the type system mandates a more precise interface type, the analysis
can use the type system’s judgement instead.
Figures 2.1 and 2.2 show our examples from sections 2.5.2 and 2.5.3 in the

statically typed language Java rather than the dynamically typed language
Python. Notice how the casts ensure the types of the source variables are
no less precise than that of the destinations. Flow analyses for Java can use
these to bound their result when the concrete type is inferred less precisely
than the interface type. Jagannathan et al. [20] formalise such an approach
in their flow analysis that uses the type system’s static types to control the
use of polyvariance. They prove that the analysis never assigns a type to a
variable that is less precise than the type system’s type assignment.
Of course, dynamically typed languages do not have a static type system.

But that does not mean that they lack interface types they can take into
account. Approaches, including our own, try to take advantage of these to
produce the same effect.
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class A {}
class B {}

class C {
static Object identity (Object x) { return x ; }

}

A a = new A();
A y = (A) C. identity (a) ;
B b = new B();
B z = (B) C. identity (b);

Figure 2.1: An example of parametric polymorphism in the statically typed
language Java. Notice how the casts ensure the type of y is no
less precise than that of a. Similarly for z and b. Flow analyses
for Java can use these to bound their result when the concrete
type fails to be inferred more precisely than the interface type.

In fact, we suggest that any flow analysis used for type inference in a
higher-order language must bound these types occasionally by using other
information to prevent an over-approximate abstract value causing the anal-
ysis to give up and return >. This might happen when, for example, infer-
ring the return type of a function whose abstract value includes non-callable
values. Without dismissing those non-callable values out of hand, the analy-
sis would be forced to return >. We discuss this in more detail in section 3.2.
Adams et al. [1] present a flow analysis based on the O(n)-complexity sub-

0-CFA to reduce the number of type checks needed in compiled Scheme.
Their analysis regains some of the precision lost by the fast but inaccu-
rate flow analysis by considering the restrictive operations performed on
values. These operations act like type-checked casts and assert the type
of the value after that point. Abstract values from the flow analysis that
are incompatible with a restrictive operation can be dismissed from the
type of a variable after it passes through the operation. We discuss this
in detail in section 3.3. Tobin-Hochstadt and Felleisen [47] independently
developed occurrence typing, which closely resembles the use of restrictive
operations by Adams et al. [1], but they do not combine it with a flow
analysis. Guha et al. [17] combine a flow analysis with an intra-procedural
analysis of JavaScript type tags to produce a more precise result.
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interface Transport {}
class Bus implements Transport {}
class Bicycle implements Transport {}

class Person {
Person(Transport transport) {

this . transport = transport ;
}
Transport transport ;

}

Bus redBus = new Bus() ;
Person jack = new Person(redBus);
Bus jacksBus = (Bus) jack . transport ;

Bicycle shinyBike = new Bicycle () ;
Person j i l l = new Person(shinyBike ) ;
Bicycle j i l l sB ike = (Bicycle) j i l l . transport ;

Figure 2.2: An example of data polymorphism in the statically typed lan-
guage Java. Notice how the casts ensure the type of jacksBus is
no less precise than that of redBus. Similarly for shinyBike and
jillsBike. Generics would achieve something similar, but make
the relationship between the person and the type of transport
explicit, avoiding the need for casts. Flow analyses for Java can
use these to bound their result when the concrete type fails to
be inferred more precisely than the interface type.

Dynamically typed languages naturally permit a greater degree of polymor-
phism than their statically typed counterparts, making polyvariance partic-
ularly vital. But polyvariant analyses do not scale, so our work uses other
sources of type information with a monovariant flow analysis to regain some
of the advantages of polyvariance.
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3 Approach

In this section we explain how two existing approaches exploit the way
values are used in a program to infer concrete types that are more precise.
The first uses the information simply to eliminate contradictions during flow
analysis so that dependent expressions can be usefully typed. The second
propagates the information to control-flow successors so that the types of
later expressions can be refined in light of it.
We adapt this technique to a duck-typed language semantics and show

that, by assuming a well-formed program, we can extend it to improve types
at control-flow predecessors, not just at the control-flow successors.

3.1 Weaknesses of flow analysis

Type inference for dynamically typed languages cannot impose restrictions
on the behaviour of the input programs, so it is usually based on a family of
general program analyses [27, 36, 41, 42] that model data flow to determine
what types of value can reach an expression [7]. These are known as concrete
types [2,32]. Such flow analyses are also used with statically typed languages
when a more precise type is needed than the interface types that the static
type system provides [2,32,46,48]. Being concrete-type analyses, they have
the potential to infer a more precise type than the interface type, but there is
no guarantee that they will. In fact, flow analyses work best with statically
typed languages because the interface types prevent less-precise concrete
type judgements propagating and polluting the analysis of the rest of the
program [42].
Dynamically typed languages have no type system interface types to fall

back on and, in their absence, flow analyses will propagate both precisely
and imprecisely inferred concrete types from creation sites to the expressions
of interest. The effect is that an imprecise type will quickly swamp the
results as the imprecision explodes through the program and the analysis is
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forced to assume a conservative approximation.
The explosion is a result of the analysis being faced with contradictions as

it is forced to reason about situations that never actually occur. We demon-
strate this in section 1.4, where a flow analysis infers a slightly imprecise
type for an expression, but that imprecision soon causes a contradiction
because the method called on the expression does not exist in all the classes
in the imprecise type. The pure flow analysis has no choice but to abandon
type inference for the result of that method call and propagate > anywhere
that that result might flow.

3.2 Solution: Impure flow analysis

Dynamically typed languages may not have interface types from a static
type system with which to refine imprecise concrete types, but that does
not mean they lack interface types altogether. The solution is to use other
evidence of an expression’s interface to recover an interface type which we
use to bound the concrete type. Contradictions between the interface type
and members of the concrete type can then be used to down-cast the con-
crete type for a more precise overall result.
This approach is already evident, to a limited extent, in the flow analysis

for concrete-type inference in the duck-typed language Smalltalk by Spoon
and Shivers [41, 42]. As usual, due to imprecision, their algorithm is some-
times forced to reason with contradictory information such as when inferring
the return type of a method call on a variable whose concrete type includes
a class that does not have such a method. Rather than giving up and infer-
ring the largest type, >, for the result of that call, they take advantage of
the fact that the method call will only return when the object supports the
method—the other situations report an error and do not return—by simply
ignoring the classes in the concrete type that lack the method. As Spoon
explains it, the technique guarantees preservation not progress and “type
information is correct as long as the program continues executing but the
program might nonetheless stop executing at any time” [41]. In particular,
they note that even when an expression’s type has been inferred as > they
can still usefully type the result of methods called on the expression by using
the method name to find all possible receivers [42].
What Spoon and Shivers have done is use evidence of the implicit in-
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terface at the expression to resolve the contradiction, in effect casting the
expression’s type to one that would guarantee progress, then proceeding
with the analysis of the method return type on that basis. Their analysis
is no longer purely based on data-flow approximation but now includes a
crude approximation of a value’s duck type.
However, they do not include the more-precise type in the inference result

for the object’s type nor in other results that depend on it. The cast is
temporary and internal, just enough to usefully analyse the method-call.

3.3 Flow sensitivity from type tests

The technique is made explicit in the work of Adams et al. [1] in the context
of the dynamically typed, functional language Scheme. Their approach is
one of the few examples of a formalism explicitly developed to refine a flow
analysis using other evidence of a value’s type.
They look at the effect of restrictive operations that include an implicit

type check on their parameter. The operations do not return if the type
check fails so, if they do return, then the argument passed to them must
have had the necessary type. This is similar to the unsupported-method
scenario above except that, unlike Spoon and Shivers, Adams et al. propa-
gate this “observational information” [1] in order to flow sensitively refine
the type of the argument where it also appears at control-flow successors of
the operation.
Taking Scheme pairs as an example, pairs are constructed using construc-

tor cons or compound constructors such as list that can be implemented
in terms of cons [40]. The pair 1 . 2 flows into variable x:

( let ((x (cons 1 2))) x)

As in other flow analyses for type inference, Adams et al. use construc-
tors like this as a source of “constructive information” [1] that propagates
through the program contributing to the concrete type at the expressions
they reach.
Like any flow analysis, this is imprecise to some degree, especially as

execution may depend on input, and the programmer is free to coordinate
polymorphism along different paths using the same variable. In the following
example the programmer relies on input being at an end so that the pair
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1 . 2 flows to x rather than the integer 3.

( let ((x ( i f (eof−object? (read)) (cons 1 2) 3)))
(cons (cdr x) (car x)))

Flow analysis, however, must be conservative and will propagate the con-
structive information from the pair constructor and integer constants to
propagate both type pair and integer to the later instances of x passed to
cdr and car.
It is at this point that Adams et al. do something novel: they use the

“observational information” [1] provided by the call to cdr, a function that
will not return if the argument passed to it is not a pair , to refine the type
inferred for x at the call to car. The behaviours of this function mean that
any value of x that reaches the call to car must be a pair .
Unlike Spoon and Shivers [42], who only use contradictions to recover a

usable type for the result of the contradictory operation, Adams et al. prop-
agate the observational information along with the constructive information
resulting in a more-precise, flow sensitive type at control-flow successors.
Observational information comes from restrictive operations that happen

before the expressions whose type they influence. But what happens before
reaching the expression is only half the story.

3.4 Favouring well-formed programs

Adams et al. developed their analysis in order to optimise Scheme com-
pilation by removing unnecessary run-time checks, for example, checking
whether x is a pair for a second time in the call to car in the example
above. This is a problem that, by definition, must allow for the possibil-
ity that programs might not be well formed and might halt with a type
error at run time, which would be the case if the programmer had been
wrong to assume input had been exhausted above. Development tools, on
the other hand, typically insist that programs are well formed before they
guarantee the correctness of their own assistance; consider, for example, a
behaviour-preserving refactoring tool.
We take advantage of this extra freedom to improve the inferred types

yet further in an effort to make types in well-formed programs as useful
as possible for tools even if it means giving incomplete (or even incorrect)
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answers for ill-formed programs. Consider a modified example of the earlier
example where, this time, we can see that the program is well-formed but
the flow analysis cannot reach the same conclusion:

( let ((x ( i f (eof−object? (read)) (cons 1 2) 3)))
( i f (eof−object? (read)) (cons x (car x)) x))

Here the programmer is relying on domain-specific knowledge about the be-
haviour of read—that once it signals that it has reached the end of input,
all subsequent calls to read will as well—to coordinate polymorphism such
that only pairs reach the call to car. The flow analysis, which is conserva-
tive, cannot reason about this domain-specific knowledge and will use the
constructive information to infer that x in the true branch of the second if
condition might be an integer or a pair.
The call to car restricts the type of x to a pair after the call returns, but

that is not helpful this time as, once the call returns, x is not used again. But
what we can do is assume that the program is well formed, which means
that x must be a pair both at car x and at all appearances of the same
binding of x that precede that call.

3.5 Duck-typed language semantics

The approach of Adams et al. that we described in section 3.3 is for Scheme:
a nominally typed rather than duck-typed language. We also sketch our ex-
tension to their approach in section 3.4 using Scheme to make the parallels
clear. However, we believe it to be of greatest benefit with duck-typed lan-
guages and the remainder of this discussion, our formalism and our practical
experience are all in that context.
The type information implied by the restrictive operations in Scheme is

nominal: integer or not integer, pair or not pair. Each restrictive operation
checks the type of its argument using its run-time type tag and each oper-
ation is monomorphic: only an exact type-tag match will suffice. Functions
are pure, so no side effects are possible and, although Scheme has mutable
variables, Adams et al. do not support observational information for those
and rely on constructive information alone [1].
Our approach is complicated by the need to allow for imperative features,

aliasing and mutable variables. We discuss the ideal duck-typed semantics
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in more detail in chapter 4, particularly in section 4.12, but for the sake of
the discussion in this chapter, let us assume the following:

• Values are on the heap.

• Values have interfaces consisting of any number of abstract features.

• The set of features supported by a value is fixed when the value is
created. Features cannot be added or removed later.

• Operations use values by requesting a feature that may or may not be
present.

• Requesting a feature from a value performs an implicit duck test.

• Variables index and dereference a stack frame of heap locations.

• Variables can be updated to reference different values: they are mu-
table.

3.6 Contraindication

Recalling the discussion from section 3.1, our aim is to recover interface
types that we can use to down cast the concrete types from flow analysis
in the way that static types from the type system do for a statically typed
language. We call this contraindication.
Concrete types are sets of abstract values, typically descriptions of the

sources that create the run-time values such as constructors, constants,
allocations or lambda abstractions. Because every value in the program
belongs to exactly one of these sources, we refer to them as classes: disjoint
categories of value. Until chapter 5 there is no assumption that these classes
are object oriented, as is commonly the case. With this in mind, we define
contraindication as follows:

Contraindication Down casting a concrete type using an interface type to
eliminate from the former those classes that are contradicted by the
latter.

We have seen two examples of existing work that make use of other infor-
mation to refine the concrete type. The first, an analysis for a duck typed

41



language, uses as little information as possible to refine the type just enough
to allow the analysis to proceed. The second uses as much preceding infor-
mation as possible to refine a type, but not in the context of a duck typed
language. If we are to explore contraindication in a duck typed context, we
must consider the information available in a duck typed language semantics.
Other than constructive information from class constructors, the main

source of type information comes from duck tests. These are implicit tests
that query a value for the presence of a feature before attempting to use
it. The duck tests perform a similar role to the restrictive operations in
Adams et al. [1] (section 3.3): values that pass the duck test must have the
feature under test and those that fail must not. Unlike the constructive
information, which produces nominal types, the duck tests expose aspects
of a value’s structural type. The key to contraindication in a duck typed
language is finding a way to combine these two notions of type.
This is possible given a restriction on the definition of classes. They must

define the upper bound of the features their values support. This allows us
to use the presence of a feature implied by a duck test to contraindicate
those classes that do not define that feature. Any contraindicated classes
can be excluded from the concrete type because they cannot be the source
of the value in any run of the program that passes the duck test.

3.6.1 Flavours of contraindication

Reasoning in terms of what happens when the program passes the duck
test leads to different flavours of contraindication depending on which duck
tests are used to contraindicate which types and what assumptions are made
about the behaviour of the program.

• Like restrictive operations occurring before an expression (section 3.3),
duck tests that precede the expression being typed lead to contraindi-
cation that is sound, even for ill-typed programs, as long as failing
duck tests halt the program. This flavour is suitable for use in an
optimising compiler, for instance.

• Alternatively, if the application makes it reasonable to assume a duck
test never fails, duck tests that precede the expression being typed lead
to contraindication that is sound regardless of whether duck tests halt
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the program. This flavour is suitable for applications such as an IDE
or code documentation.

• Once we assume a duck test never fails, the duck tests on or after the
expression being typed also lead to sound contraindication.

Contraindication produces the most precise concrete type from the most
precise interface type—the largest set of duck tests. But we must be careful
not to get carried away when deciding which duck tests to include: not every
feature that appears to contribute to an expression’s type actually does so.
The types we want to infer are a static over-approximation of the values
that may appear at an expression, so only those features that restrict the
expression’s type on every run of the program can be included in its type.
We need to freeze the duck type to produce an interface type from only
those duck tests that are guaranteed to occur.
In the next two sections we define precisely which features to include in

the frozen duck type. In section 3.10 we outline a computable analysis to
collect both kinds of feature based on intra-procedural data-flow analysis. In
chapter 4 we formalise both the frozen duck types, the analyses to compute
them and we prove their soundness properties.

3.7 Observed features

As discussed above, requesting a feature from a value triggers a duck test,
and that test only succeeds if the value possesses the feature. When a value
is always tested in this way before it reaches an expression, we know the
value will have the feature at the expression if:

1. the language semantics is such that failing duck tests halt execution,
in which case a value without the feature cannot reach the later ex-
pression; or

2. the input program is known never to fail a duck test, in which case
the value is bound to have the feature before it arrives at the duck
test.

This leads to the following definition of observed features:
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Observed features The observed features of an expression are those whose
absence from a value would cause the value to fail a duck test at a
point in the program prior to the expression.

In the following fragment of Python, method f is an observed feature
of x42. No matter what happens outside this fragment, every value that
reaches expression x42 will have a method f:

41 x . f ()
42 print x

However, if the fragment is adapted as follows, method f is no longer an
observed feature of x42 unless today is always Tuesday which, if the omitted
code is sensible, is not going to be the case:

40 i f today == Tuesday:
41 x . f ()
42 print x

Readers with a static typing background might find it perverse to say that f
is not required at line 42; surely the programmer must realise that Tuesday
is a possibility and so must assign a value x with a method f, even if it is
not always called?
Certainly the programmer must realise that Tuesday is a possibility and in

a statically typed language that would, indeed, imply that they must assign
a value x with a method f. However, this implication is imposed by the static
type system to make the problem decidable; it is not required by logic. In a
dynamically typed language, it is very possible the programmer coordinated
polymorphism (section 1.3) in such a way that, whenever Tuesday arises, x
has a method f but not necessarily otherwise:

31 class HasF:
32 def f ( se l f ) :
33 print "Hello"
34

35 i f today == Sunday:
36 x = 0
37 else :
38 x = HasF()
39
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40 i f today == Tuesday:
41 x . f ()
42 print x

This fragment is well formed, assuming Tuesday and Sunday are mutually
exclusive; it will never encounter a failed duck test. However, observed
features are sound even if the program is not well formed, assuming that
failing a duck test halts execution.
It might appear that only statements whose execution strictly dominates

an expression can be in the latter’s observed features; after all, the other
statements might not necessarily execute before reaching the expression, just
as in the example. That is almost true and, indeed, it is how we calculate
an approximation of observed features (section 3.10.2) but it is not quite
accurate. Consider the following:

71 i f today == Tuesday:
72 x .g()
73 x . f ()
74 else :
75 x . f ()
76 x .h()
77 print x

Neither line 73 nor line 75 dominate line 77 and yet method f is an observed
feature of x. One way to explain it is that the duck test must dominate, even
if the statements where the tests occur do not dominate individually. The
situations can be much more subtle than the example above with dominating
feature’s tests being far removed from each other, even indirected through
procedure calls. Our current implementation (chapter 6) does not attempt
to consider such features although it remains an interesting avenue for future
work (section 8.3.2).
Before moving on to consider tests occurring after the expression, it is

important to note that these judgements rely on an aspect of our language
semantics that we have been assuming until now (section 3.5):

The set of features supported by a value is fixed when the value
is created. Features cannot be added or removed later.
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If this were not the case, a feature could be removed from a value between
the duck test and the expression. Observed features would no longer be a
sound approximation of the features at the expression.

3.8 Required features

While observed features may be sound even for ill-formed programs when
failing duck tests halt a program, we assume a well-formed program in order
to benefit from a second category of features, required features, which are
sound only given that assumption. Our results in chapter 7 show that this
second category accounts for the largest part of the improvement in type
precision.

Required features The required features of an expression are those whose
absence from a value at the expression will lead to a failing duck test
on any run of the program including the expression.

This informal definition implies a causal relationship between the absence
of the feature and the type error, but what it does not make clear is that the
run-time type error need not happen immediately. The point at which the
feature is requested may be far removed from the expression being typed,
but the typing can still take advantage of it as long as the type error is
inevitable.
In the following fragment of Python, method f is a required feature of

both x77 and x78. Any value in x that survives the duck test on line 78 will
have had a method f in x on line 77. In other words, if the program is well
formed, x78 has a method f.

77 print x
78 x . f ()

As with observed features, if we adapt the fragment to make it input-
dependent whether the feature is requested, method f is no longer a required
feature of x77:

77 print x
78 i f today == Tuesday:
79 x . f ()
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Only those features that will definitely lead to a run-time type error if they
are missing at an expression will be required features. Again, although
this may seem perverse to readers with a static typing background, where
types are used to tell the programmer if a missing feature may lead to an
error, a dynamically typed language allows the programmer to coordinate
polymorphism freely so required features have to be defined more strictly.
Our required features are similar to the success typings of Lindahl and

Sagonas [23], which we describe in section 2.4. They define success typings
as type signatures that statically over-approximate the set of arguments
that will allow a function to return an argument, and over-approximates
the set of values the function can return. In other words, all arguments not
covered by the type signature will cause the function to encounter a run
time type error and never return.
Lindahl and Sagonas [23] infer their typings from an analysis of pattern

matches applied to values. These checks assert either exact value equality
or that a value is a member of a particular named category of values. If the
analysis can show that the assertion holds for any successful execution, the
requirements of the match become part of the success typing. That means a
value appearing at an expression but not included in the expression’s success
type must be guaranteed to fail a pattern match at some point during every
run of the program.
In our case, any value appearing at an expression missing a feature listed

in our approximated set of required features must be guaranteed to eventu-
ally be asked for one of those features on any run of the program, causing
a duck test to fail.

3.9 Aliasing

Until now our examples have not included variable mutation, but any analy-
sis we might hope to apply to a language like Python must. A duck test can
only influence the features of an expression, be they observed or required,
if the duck test requests the feature from the value at the expression.
In the languages targeted by Adams et al. [1] and Lindahl and Sago-

nas [23], Scheme and Erlang respectively, immutable variables combined
with a value-based language semantics means that the issue does not arise:
variables are defined once, so will always ‘alias’ themselves while nothing
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else aliases anything. In our more general language semantics (section 3.5)
expressions reference values on the heap, which may be aliased, and a pro-
gram can rebind a variable to point to a different value than the one with
which it was initialised.
Exactly which expressions can be considered for observed or required

features is subtle. Any of the expression’s so called may-aliases [33] might
yield the same value, but this is not strong enough. Consider the following:

19 x . f ()
20 i f today == Tuesday:
21 x = 10
22 print x

Here x19 may-aliases x22, so method f is not an observed feature of x22.
Likewise:

7 print x
8 i f today == Tuesday:
9 x = 10

10 x . f ()

Here x10 may-aliases x7, so method f is not a required feature of x7.
The solution may appear to be must-aliasing, a much stronger guarantee:

“Names a and b are said to must-alias each other at a pro-
gram point if, for all paths P from the program beginning to
the program point, a and b both refer to the same location after
execution along P” [33].

Indeed, we use an even stronger approximation of must-aliasing in our imple-
mentation because it is easy to calculate (section 6.5), but must-aliasing is
stronger than necessary and excludes some observed and required features.
For example, it prevents taking into account features that are requested at
an expression that aliases our expression on every run of the program but
not throughout the entire execution of the program. Imagine for a moment
that Python had do/while loops:

34 y = . . .
35 y .p()
36 do:
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37 y .q()
38 y = . . .
39 while x

In this example method q is a required feature of y34 and y35. After line 38
y is no longer guaranteed to reference the same value, and its features may
be different, but that does not change the fact that there is no path that
can pass through y35 without encountering a duck test for method q on the
same value.
Similarly, for observed features:

84 def fun(x) :
85 x . f ()
86

87 a =W()
88 fun(a)
89 a.g()
90

91 b = Z()
92 fun(b)

Here, method f is an observed feature of a88 because there is no path through
this fragment that will reach line 88 if a does not have a method f; the
duck test inside the function call would prevent it. However, must-aliasing
would exclude x85 from consideration because it also gets bound to b in an
unrelated situation.
All we require is that at run time the feature at the candidate expression

is requested from the same value as the expression being typed. It does
not mean that it cannot be requested from other values at the candidate
expression at other times.

3.10 Computable analysis

Observed and required features are an uncomputable ideal. They are defined
in terms of actual execution, so any useful analysis can, at best, approxi-
mate them. The issues discussed above concerning domination and aliasing
are symptoms of this. The aim is to find a provably sound computable
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approximation without it being so conservative that it excludes scenarios
likely to make a useful contribution in practice.
In chapter 4 we describe this in detail by repeatedly approximating ob-

served and required features until we arrive at an analysis that is com-
putable on an intra-procedural control flow graph using standard compiler
algorithms for imperative languages. We sketch these analyses now.

3.10.1 Basic set

The principle behind both analyses is that languages make some duck tests
syntactically evident from the source code. From these, we can derive a basic
set of observed and required features and then propagate these through the
program. In our Python-style ideal language the syntactically evident duck
tests are method calls: e.m()

Syntactically evident A syntactic form that guarantees a duck test for a
feature and unequivocally identifies both which feature is being re-
quested and the syntactic element from whose value it is requested.

By this definition, expression e is the syntactic element whose value is re-
quested for a feature and the feature requested is a method m.
The basic set of required features follows directly from the syntactically

evident duck tests: a test for a feature means that feature is required at
the expression being tested. The situation is slightly more complicated for
observed features where a duck test implies an observed feature for the
expressions that always follow and alias the tested expression, rather than
the tested expression itself. We formalise this in section 4.7.2.

3.10.2 Propagation

The observed features of one node are also observed features of its strictly
dominated aliases. Likewise, the required features of a node are also required
features of its postdominated aliases. In this way, we can propagate the
basic sets to their dominated and postdominated aliases. This is the basis
of the analyses described in chapters 4 to 6, where we define dominating
and postdominating aliasing and also how to approximate them, as they are
uncomputable in general.
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(Post)dominating aliases still exclude some situations we would rather
include, for instance the example in section 3.7 where a feature is re-
quested of the same value on both branches of a conditional: the feature
(post)dominates other expressions but the syntactically evident statements
do not. In the future we hope to improve this (section 8.3.2).

3.10.3 Using the approximated features

The observed and required features are useful on their own. We can use
them to automatically generate API documentation, to suggest code com-
pletions and even to find some bugs. But our main aim, and the reason for
calculating them in the first place, is to use them to improve the precision
of flow-based type inference. We call this contraindication and, as we de-
scribe in section 3.6, is a matter of using the features of an expression to
filter out any class that does not support the feature from the concrete type
inferred by flow analysis. Now we know how to approximate those features
and, as the approximation under-estimates the expression’s features, using
them for contraindication errs on the side of not contraindicating member
of the concrete type. The result is that, given a sound concrete type as
input, contraindication with our approximated features will yield a sound,
and possibly more precise, concrete type.

In this section we have seen two examples of existing work that refine a
concrete type from a flow analysis using non-constructive type information.
We show how we can extend this by assuming a well-formed program to
take more information into account. We map these concepts to a duck
typed language semantics in the form of observed and required features
and discuss the challenges presented by an imperative language. Finally,
we sketch a computable approximation enabling sound contraindication of
concrete types. In the next chapter we formalise the analyses laid out in
this chapter and in chapter 5 we explore the challenges of applying these
ideas to a concrete language, Python.
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4 Formal presentation

In this chapter we formalise the ideas and theories discussed in the previous
chapters.
The presentation is in two parts: firstly, the formalisation of observed

and required features, leading to computable analyses to recover them (sec-
tions 4.5 to 4.10); secondly the contraindication analysis that refines con-
cretes types using features (section 4.11).

4.1 Soundness properties

For the contraindication analysis, `CI (definition 26 in section 4.11), we
establish the soundness property that it only produces valid concrete types,
|=C (definition 24 and theorem 10 in section 4.11):

`CI ⇒ |=C

The contraindication analysis takes valid concrete types and ‘had’ fea-
tures, |=F (definition 10 in section 4.5.1), as input. Therefore, to enable our
feature recovery analyses to be used for contraindication, we establish the
soundness property that they only produce ‘had’ features.
For clarity, we establish soundness of the analyses in two steps. First, we

prove that required features, `RF (definition 9 in section 4.5), and observed
features, `OF (definition 11 in section 4.6), are ‘had’ features in well-formed
programs (theorems 1 and 2):

`RF ⇒ |=F

`OF ⇒ |=F

Then we show that the analyses conservatively approximate observed and
required features. This step is sketched in section 4.3.
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Neither contraindication nor feature recovery are complete. There are
valid concrete types that are not revealed through contraindication and
‘had’ features that are not recovered by our feature analyses.

4.2 Preliminaries

Let us dispense with various preliminaries that establish the framework for
our formalism.
The relations in this chapter range over various sets that we define here.

First we define S, the sets used by all parts of the formalism, followed by
S+, the additional sets needed to reason about contraindication. These sets
are independent of a specific language semantics. In section 4.10 we extend
these with Sπ which is specific to the toy language presented in that section.

S

P ∈ Program programs

pc ∈ Counter = N program counters

m ∈ Feature features

ν ∈ Value = Feature→ . . . values

x, y ∈ VarId variable names

ι ∈ Addr = {ιi|i ∈ N} locations

χ ∈ Heap = Addr→ Value heaps

ϕ ∈ Frame = VarId→ Addr stack frames

σ ∈ Stack = Frame∗ stacks

c ∈ Configuration = Counter× Stack×Heap configurations

p ∈ PathN = N∗ paths

S+

n ∈ Class = Feature→ ... abstract values

t ∈ ConcreteType = P (Class) flow-based type

For each of the sets in S we define the type of values they may contain,
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with the exception of Feature, VarId, Program and the range to which
values map features. These depend on the language being modelled. For
many of these sets we also include meta variables that are used throughout
the chapter to range over members of the set.
We abuse the meta variable representing stacks, σ, so that, as well as

being a sequence of stack frames, it is a function that take a variable and
dereference it to an address, using the top stack frame.

σ(x) = ϕ(x) if σ = σ′.ϕ

undefined otherwise

We use the function dom to extract the domain of a mapping in the
conventional way. For example, where ν is a value, dom(ν) returns the set
of features in the value’s domain.
Paths are constructed with the concatenation operator as in p1 ·p2, which

results in a path made of all the nodes in p1 followed by all the nodes in p2.

4.2.1 Small step evaluation

We reason using a small step operational semantics. The specifics of any
particular semantics is left until section 4.10. For the moment, let us just
focus on the language-independent aspects of our approach.
The semantics of execution is defined as a transition from one configu-

ration of a program to another in a single step. Configurations consists of
a program counter, a stack and a heap allowing us to model imperative
languages with side effects.

Definition 1 (Execution)  

P ` 〈pc, σ, χ〉 〈pc′, σ′, χ′〉

The full definition of execution depends on the semantics of the language,
an example of which we give in section 4.10. For now we just assume it may
be input-dependent.
Frequently we need to reason about a configuration resulting from an

arbitrary (possibly zero) number of steps. For this purpose we define  ∗,
the reflexive, transitive closure of execution.
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Definition 2 (Transitive execution)  ∗

P ` 〈pc, σ, χ〉 ∗ 〈pc′, σ′, χ′〉

iff

pc = pc′ σ = σ′ χ = χ′

P ` 〈pc, σ, χ〉 ∗ 〈pc′, σ′, χ′〉

P ` 〈pc, σ, χ〉 〈pc′, σ′, χ′〉

P ` 〈pc, σ, χ〉 ∗ 〈pc′, σ′, χ′〉

P ` 〈pc, σ, χ〉 ∗ 〈pc′′, σ′′, χ′′〉 P ` 〈pc′′, σ′′, χ′′〉 ∗ 〈pc′, σ′, χ′〉

P ` 〈pc, σ, χ〉 ∗ 〈pc′, σ′, χ′〉

We assume that all executions of any program start from a single, iden-
tifiable configuration

Definition 3 (Initial configuration) init

init = 〈1, σ1, χ1〉

and ends in a member of a set of identifiable final configurations, final.
Execution is input-dependent so P ` 〈pc, σ, χ〉  〈pc′, σ′, χ′〉 means it is

possible for configuration 〈pc, σ, χ〉 to transition to configuration 〈pc′, σ′, χ′〉
in program P but it is not guaranteed to. Therefore we define the paths
of a program as all possible sequences of configurations from the initial
configuration to one of the final configurations.
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Definition 4 (Execution paths) Paths

Paths : Program→ P
(
PathConfiguration

)

Paths(P ) =
{
p

∣∣∣∣∣ p ∈ ReachingPaths(P )
∃p′, c. p = p′ · c ∧ c ∈ final

}

where

ReachingPaths(P ) =

init ∪
{
p · 〈pc, σ, χ〉 · 〈pc′, σ′, χ′〉

∣∣∣∣∣ p · 〈pc, σ, χ〉 ∈ ReachingPaths(P )
P ` 〈pc, σ, χ〉 〈pc′, σ′, χ′〉

}

As short hand, we use P ` init ∗ c to describe a configuration being reach-
able and c ∈ p to mean that a configuration appears within a path. They are
equivalent to the more verbose path form and we use them interchangeably
without necessarily referencing the following lemmas.

Lemma 1.

∀P, c (P ` init ∗ c ⇔ ∃p ∈ Paths(P ), p1, p2. p = p1 · c · p2)

Lemma 2.

∀p, c (c ∈ p ⇔ ∃p1, p2. p = p1 · c · p2)

4.2.2 (Post)domination

We are particularly interested in configurations that are guaranteed to pre-
cede or follow another; the dominators and postdominators.
A configuration dominates another only when it occurs on all paths

through the program reaching the second configuration. A program point
dominates another if it appears in some configuration on all paths reaching
any configuration at the second program point.
A configuration postdominates another only when it occurs on all termi-

nating paths through the program from the second configuration. A pro-
gram point postdominates another if it appears in some configuration on all
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terminating paths through the program that include the second program
point in some configuration.
We give a general definition of domination and postdomination over sets

of paths as the relationship between sets of paths and their respective
(post)dominators helps us to establish a computable approximation later
(section 4.9.1).

Definition 5 (Domination over sets of paths) doms

doms : PathN → P (N ×N)

(n, n′) ∈ doms(Q)

iff

∀p ∈ Q, p1, p2
(
p = p1 · n′ · p2 ⇒ ∃p3, p4. p1 = p3 · n · p4

)

Definition 6 (Postdomination over sets of paths) postdoms

postdoms : PathN → P (N ×N)

(n, n′) ∈ postdoms(Q)

iff

∀p ∈ Q, p1, p2
(
p = p1 · n′ · p2 ⇒ ∃p3, p4. p2 = p3 · n · p4

)

4.3 Overview

We begin by giving an overview of the relations we define in this chapter.
We describe the essence of each relation in English, and give diagrams that
illustrate how the relations, individually or in combination, conservatively
approximate others. Solid arrows in the diagrams indicate implications;
solid arrows with multiple tails indicate that the conjunction of the relations
at the tails imply the relation at the head. Ultimately, the relations combine
to guarantee that contraindication produces valid concrete types.
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P, pc |=C x : t

P, pc `CI x : t

t from filtering t′ using P, pc |=F x : m

P, pc |=C x : t′

P, pc `CFA x : t′

Figure 4.1: Sketch of contraindication, `CI. The analysis makes use of any
available valid feature information, |=F, to refine concrete types
from flow analysis, `CFA. If the flow analysis types are valid
|=C, the refined concrete types are valid as well, so the analysis
is sound.

Valid concrete type P, pc |=C x : t Concrete types are sets of abstract val-
ues that cover all the values appearing at a variable. Our overall goal
is to infer valid concrete types that cover the values as precisely as
possible, in other words making set t as small as possible.

We obtain a sound approximation of concrete types from flow analysis
and then use contraindication to make these types more precise (figure 4.1).

Flow analysis P, pc `CFA x : t Flow-analysis-based type inference produces
concrete types. We do not define a particular flow analysis, but it is
assumed to exist and to be sound.

Contraindicated types P, pc `CI x : t Contraindication produces a more
precise concrete type for a variable, given its concrete type from flow
analysis and its interface type. The contraindicated type remains a
valid concrete type so contraindication is sound.

A variable’s interface type—its frozen duck type—consists of any number
of features.
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P, pc |=F x : m

P, pc `OF x : m P, pc `RF x : mP�

Figure 4.2: Sketch of soundness properties for observed and required fea-
tures, `OF and `RF. Both are sound for well-formed programs,
P�.

Having a feature P, pc |=F x : m A variable is said to have a feature at a
point in a program if its value always possesses the feature at that
point.

Features are the subject of duck tests. The presence of duck tests implies
the presence of features under different assumptions.

Duck test P, pc, σ `DT ι : m Every attempt to use a feature of a value
is preceded by a duck test that verifies that the value possesses the
feature. If it does not, the duck test transitions the program to one of
a set of identifiable error configurations.

We define two categories of feature that are implied by the duck tests in
different ways (section 4.3).

Observed features P, pc `OF x : m Features that are based on duck tests
occurring prior to a value reaching a variable. Assuming that duck
tests halt execution when they fail, such tests imply the presence of
features soundly regardless of the behaviour of the input program.
Alternatively, assuming the program is known never to fail a duck
test, the features are guaranteed present in well-formed programs.

Required features P, pc `RF x : m Features that are based on duck tests
occurring after a value has reached a variable. These features are guar-
anteed sound in well-formed programs but not ill-formed programs.

Well formed program P� A well formed program never fails a duck test.
Making this assumption makes observed and required features sound
approximations of actual features.
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P, pc′ `SDT x′ : m P, pc′, σ `DT σ(x′) : m P, pc′ `RF x′ : m

Figure 4.3: A basic set of required features, `RF, is implied directly by the
presence of syntactically evident duck tests, `SDT.

To make contraindication practical, we develop analyses to approximate
observed and required features for an imperative, duck-typed language. Pre-
cise observed and required features are uncomputable so we approximate
them in stages until we achieve a computable approximation. We prove
that these approximations are still sound.
The analyses rely on the language making some duck tests syntactically

evident.

Syntactically evident duck tests P, pc `SDT x : m Some duck tests are
dictated by the syntax. For example, in an object-oriented language
the method call syntax fixes the feature being tested for and the vari-
able whose value is tested.

We start with the approximation of required feature as the formalism is
slightly simpler.

Required features A basic set of required features comes immediately
from the syntax (figure 4.3). The remainder of our relations aim to propa-
gate that basic set as far as possible (figure 4.4).
The first computable approximation we present depends on an inter-

procedural control flow analysis. This is precisely the kind of analysis whose
inaccuracies in higher order languages we are attempting to bypass in the
first place so we adapt the formalism and prove that it remains sound with
only an intra-procedural flow analysis.

Postdominating aliases P ` pc′, x′ pda pc, x The glue that binds required
features together. The features required by a variable at a program
point are also required at other program points that it postdominates
by the variables that it simultaneously aliases. This propagates the
initial set of required features to points they postdominate but also
propagates those new required features onwards.
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P, pc′ `RF x′ : m

P, pc `RF x : m

P ` pc′, x′ pda pc, x

P ` pc′, x′ ∀∼ pc, x (pc′, pc) ∈ postdoms(Strip(Paths(P )))

x = x′P ` NK(pc′, pc, x)

(pc′, pc) ∈ postdoms(InterCfgPaths(P ))

P ` IntraNK(pc′, pc, x) (pc′, pc) ∈ postdoms(IntraCfgPaths(P, proc))

uncomputable
computable using inter-procedural CFG

computable using intra-procedural CFG

Figure 4.4: Propagating basic set of required features. At the top of
the figure we see that members of the basic set of re-
quired features, derived directly from syntax (figure 4.3),
propagate to other program points for which their variable
is a postdominating alias, pda. Postdominating aliasing
is uncomputable and is approximated by a combination of
must-aliasing, ∀∼, and postdomination over execution paths,
postdoms(Strip(Paths(P ))). Still uncomputable, we approxi-
mate those two relations with computable kill analysis, IntraNK,
and postdomination over control-flow-graph paths, either inter-
procedural, postdoms(InterCfgPaths(P )), or intra-procedural,
postdoms(IntraCfgPaths(P, proc)).
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Postdominators (pc′, pc) ∈ postdoms(Strip(Paths(P ))) Configuration-
agnostic postdomination. Postdominating aliases are defined in
terms of the actual configuration (program state) at the point of
domination. It does not lend itself well to developing a computable
approximation. We break it into two, half of which is postdomination
between program points alone. Less accurate but has a straightfor-
ward computable approximation. The two separate analyses together
approximate the original postdominating aliases.

Must-aliasing P ` pc′, x′ ∀∼ pc, x The second half of the approximation.
As the connection between program state and postdomination has
been lost by breaking them apart, we use must-aliasing to ensure the
approximation is sound when combining with configuration-agnostic
postdomination.

Kill analysis P ` NK(pc′, pc, x) An approximation of must-aliasing for
variables of the same name. For a given variable name at one pro-
gram point, the same name will be a must-alias at another program
point if no intermediate step has changed the its value. This is a
very restricted form of must-aliasing but it is easy to approximate
computably as makes it equivalent to kill analysis.

Inter-procedural CFG postdomination (pc′, pc) ∈ postdoms(InterCfgPaths(P ))
Our first computable approximation of domination. The inter-
procedural control flow graph over-approximates execution so
under-approximates postdomination. Depending on an inter-
procedural analysis is not ideal for a higher order language especially
when the point of our analysis was to avoid the need for a precise
(and slow) inter-procedural algorithm.

Intra-procedural CFG postdomination (pc′, pc) ∈ postdoms(IntraCfgPaths(P,m))
Our second computable approximation of domination. The intra-
procedural control flow graph no longer over-approximates actual
execution but we prove that the domination relationship is still
preserved for program points within the same procedure.

Intra-procedural CFG kill analysis P ` IntraNK(pc′, pc, x) Kill analysis
for program points in the same procedure. In our toy language (sec-
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P, pc′ `SDT x′ : m P, pc′, σ `DT σ(x′) : m

P, pc `OF x : m

P ` pc′, x′ da pc, x

Figure 4.5: A basic set of observed features, `OF, is derived from syntacti-
cally evident duck tests, `SDT, occurring on a variable’s dom-
inating aliases, da, rather than directly on the variable as in
figure 4.3.

tion 4.10) this safely approximates must-aliasing despite only consid-
ering kills in the same procedure as our language semantics ensures
the stack is protected from modification during calls.

Observed features Approximating observed feature is slightly more com-
plicated as the basic set does not follow directly from the syntactically ev-
ident duck tests but already needs to be linked to the tests by dominating
aliasing (figure 4.5).

Dominating aliases P ` pc′, x′ da pc, x The mirror image of postdominat-
ing aliases. This time it is the glue that binds observed features to-
gether and also turns syntactically evident duck tests into the basic
set of observed features.

Propagating the basic set follows the same pattern as for required features
except in terms of domination rather than postdomination (figure 4.6).

4.4 Duck tests

Duck tests are the basis of all our analyses, so here we define exactly what
we assume their behaviour to be. The semantics of a language must have
duck tests with this behaviour if this formalism is to apply. In the following
definition and the remainder of the thesis, TROUBLE is a set of program
configurations that result from failed duck tests. These configurations may
or may not be final.
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P, pc′ `OF x′ : m

P, pc `OF x : m

P ` pc′, x′ da pc, x

P ` pc′, x′ ∀∼ pc, x (pc′, pc) ∈ doms(Strip(Paths(P )))

x = x′P ` NK(pc′, pc, x)

(pc′, pc) ∈ doms(InterCfgPaths(P ))

P ` IntraNK(pc′, pc, x) (pc′, pc) ∈ doms(IntraCfgPaths(P, proc))

uncomputable
computable using inter-procedural CFG

computable using intra-procedural CFG

Figure 4.6: Propagating basic set of observed features. At the top of the
figure we see that members of the basic set of observed fea-
tures, derived as in figure 4.5, propagate to other program
points for which their variable is a dominating alias, da. Dom-
inating aliasing is uncomputable and is approximated by a
combination of must-aliasing, ∀∼, and domination over execu-
tion paths, doms(Strip(Paths(P ))). Still uncomputable, we ap-
proximate those two relations with computable kill analysis,
IntraNK, and domination over control-flow-graph paths, either
inter-procedural, doms(InterCfgPaths(P )), or intra-procedural,
doms(IntraCfgPaths(P, proc)).
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Definition 7 (Duck test) `DT

P, pc, σ `DT ι : m

iff

pc 6∈ {pcf | 〈pcf , σ, χ〉 ∈ final}

∀χ (m 6∈ dom(χ(ι))⇒ ∀c (P ` 〈pc, σ, χ〉 c⇒ c ∈ TROUBLE))

In sections 3.7 and 3.8 we said that observed and required features were
sound for any well-formed program where well-formed programs are those
that can never fail a duck test.

Definition 8 (Well formed program) �

P�

iff

¬∃c. P ` init ∗ c ∧ c ∈ TROUBLE

Remember, this is not a statement of what a static analysis can estab-
lish about the program—we are not saying the program is well typed—just
what the program will actually do. Given a sensible interpretation of the
behaviour of the predicates, our example in section 1.3 is well formed by
this definition.

4.5 Required features

In section 3.8 we defined required features informally. Now we do so for-
mally. This definition is not concerned with how to calculate required fea-
tures statically and, as such, is defined in terms of actual execution rather
than any static approximation of real executions such as control flow graph
succession.
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Definition 9 (Required feature) `RF

P, pc `RF x : m

iff

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.

〈pc′, σ′, χ′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′, σ′ `DT σ(x) : m

)

This definition says that a variable requires a feature at a point in a program
if and only if, whenever that program point is reached on any run of the
program, the value referenced by the variable will encounter a duck test for
that feature, if not immediately then eventually.

Example. If P is the example from section 1.3 we could say

P, 17 `RF p : foo

P, 17 `RF p : bar

Example. Given a sensible interpretation of the predicates, we could also
say

P, 14 `RF p : foo

because definition 9 is about what actually happens rather than what a
static analysis can prove happens.

Note that the feature need not always be required at the same variable on
each execution; just that, on every execution, it must be required of some
variable. For example, in the following program P it holds that P, 1 `RF x :
n.

1 x = . . .
2 i f x :
3 x .m()
4 x .n()
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5 x .q()
6 else :
7 x .n()

4.5.1 Soundness

We judge that required features are sound if any variable—a static syntactic
element—is guaranteed to have all its required features at run time. This is
a static requirement, in other words it must hold for any run of the program.

Definition 10 (Having a feature) |=F

P, pc |=F x : m

iff

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ m ∈ dom(χ(σ(x))))

A variable can be said to have a feature, statically, at a program point if,
whenever that program point is reached on any run of the program, the
value referenced by the variable satisfies the requirements of the feature.
Now we prove that a required featured of a variable in a well formed

program guarantees the variable always has the feature. The proof relies
on an assumption about the semantics of the language that means that a
value’s features can not change at run time.

Assumption 1 (The set of features of a value is fixed within a program).

∀p ∈ Paths(P ), pc, x, σ, χ, pc′, x′, σ′, χ′, p1, p2, p3 p = p1 · 〈pc, σ, χ〉 · p2 · 〈pc′, σ′, χ′〉 · p3 ⇒
∀ι ∈ dom(χ) ∩ dom(χ′).dom(χ(ι)) = dom(χ′(ι))


It is left to the particular operational semantics of the language to enforce
this but in chapter 5 we will see a real world language whose semantics
fail to do so but whose programming conventions are such that the results
remain reasonable (chapter 7).
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Theorem 1 (Required features are sound for well formed programs).

∀P, pc, x,m
(

P�
P, pc `RF x : m

⇒ P, pc |=F x : m
)

Proof.

Given

P� (4.1)

P, pc `RF x : m (4.2)

Show

P, pc |=F x : m

By (4.1) and definition 8

¬∃c. P ` init ∗ c ∧ c ∈ TROUBLE (4.3)

By (4.2) and definition 9

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.

〈pc′, σ′, χ′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′, σ′ `DT σ(x) : m

)
(4.4)

Show, from definition 10

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ m ∈ dom(χ(σ(x))))

Take σ, χ arbitrary.

Assume

∃p ∈ Paths(P ), p1, p2. p = p1 · 〈pc, σ, χ〉 · p2 (4.5)

m 6∈ dom(χ(σ(x))) (4.6)

Show contradiction.

Take p, p1, p2 such that by (4.5)

p ∈ Paths(P ) (4.7)

p = p1 · 〈pc, σ, χ〉 · p2 (4.8)
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By (4.8), (4.7) and (4.4)

∃pc′, σ′, χ′.
〈pc′, σ′, χ′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′, σ′ `DT σ(x) : m
(4.9)

Assume pc′, σ′, χ′ such that by (4.9)

〈pc′, σ′, χ′〉 ∈ 〈pc, σ, χ〉 · p2 (4.10)

P, pc′, σ′ `DT σ(x) : m (4.11)

By (4.11) and definition 7

pc′ 6∈ {pcf | 〈pcf , σ, χ〉 ∈ final} (4.12)

∀χ
(
m 6∈ dom(χ(σ(x)))⇒ ∀c

(
P ` 〈pc′, σ′, χ〉 c⇒ c ∈ TROUBLE

))
(4.13)

By (4.6), (4.10) and assumption 1

m 6∈ dom(χ′(σ(x))) (4.14)

By (4.14) and (4.13)

∀c
(
P ` 〈pc′, σ′, χ′〉 c⇒ c ∈ TROUBLE

)
(4.15)

By (4.12), (4.10), (4.8), (4.7) and definition 4

∃c. P ` 〈pc′, σ′, χ′〉 c (4.16)

By (4.15) and (4.16)

∃c. P ` 〈pc′, σ′, χ′〉 c ∧ c ∈ TROUBLE (4.17)

By (4.7)–(4.17) and (4.3)

⊥
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4.6 Observed features

Similar to required features, observed features are defined in terms of duck
tests but this time the duck tests precede the program point in question.
One again, the definition is not concerned with how to calculate the features
statically and is defined in terms of actual execution.

Definition 11 (Observed feature) `OF

P, pc `OF x : m

iff

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.

〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m

)

This definitions says that a variable observes a feature at a point in a pro-
gram if and only if, whenever that program point is reached on any run of
the program, the value referenced by the variable will already have encoun-
tered a duck test for that feature. Unlike with required features, duck tests
at the program point are not included.

Example. If P is the example from section 1.3 we could say

P, 18 `OF p : foo

but

P, 18 6`OF p : bar

As with required features, the feature need not always be observed at the
same variable on each execution; just that, on every execution, it must be
observed of some variable.

4.6.1 Soundness

We judge that observed features are sound if any variable is guaranteed to
have all its observed features at run time.

70



First we prove that observed features are sound in a well formed program.

Theorem 2 (Observed features are sound for well formed programs).

∀P, pc, x,m
(

P�
P, pc `OF x : m

⇒ P, pc |=F x : m
)

Proof.

Given

P� (4.18)

P, pc `OF x : m (4.19)

Show

P, pc |=F x : m

By (4.18) and definition 8

¬∃c. P ` init ∗ c ∧ c ∈ TROUBLE (4.20)

By (4.19) and definition 11

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.

〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m

)
(4.21)

Show, from definition 10

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ m ∈ dom(χ(σ(x))))

Take σ, χ arbitrary.

Assume

∃p ∈ Paths(P ), p1, p2. p = p1 · 〈pc, σ, χ〉 · p2 (4.22)

m 6∈ dom(χ(σ(x))) (4.23)

Show contradiction.

Take p, p1, p2 such that by (4.22)

p ∈ Paths(P ) (4.24)

p = p1 · 〈pc, σ, χ〉 · p2 (4.25)
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By (4.25), (4.24) and (4.21)

∃pc′, σ′, χ′.
〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m
(4.26)

Assume pc′, σ′, χ′ such that by (4.26)

〈pc′, σ′, χ′〉 ∈ p1 (4.27)

P, pc′, σ′ `DT σ(x) : m (4.28)

By (4.28) and definition 7

∀χ
(
m 6∈ dom(χ(σ(x)))⇒ ∀c

(
P ` 〈pc′, σ′, χ〉 c⇒ c ∈ TROUBLE

))
(4.29)

By (4.23), (4.27), (4.25) and assumption 1

m 6∈ dom(χ′(σ(x))) (4.30)

By (4.30) and (4.29)

∀c
(
P ` 〈pc′, σ′, χ′〉 c⇒ c ∈ TROUBLE

)
(4.31)

By (4.31), (4.27) and (4.25)

∃c. P ` 〈pc′, σ′, χ′〉 c ∧ c ∈ TROUBLE (4.32)

By (4.24)–(4.32) and (4.20)

⊥

We can also prove that observed features are sound if duck tests halt
execution. This allows them to be used to reason about ill formed programs
in languages with this behaviour making them suitable for applications such
as optimisation.

Theorem 3 (Observed features are sound when failing duck tests are final
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and the program has not already failed).

∀P, pc, x,m


P, pc `OF x : m

∀c (c ∈ TROUBLE⇒ ¬∃c′. P ` c c′)
∀σ, χ (P ` init ∗ pc, σ, χ⇒ 〈pc, σ, χ〉 6∈ TROUBLE)

⇒ P, pc |=F x : m


Proof.

Given

P, pc `OF x : m (4.33)

∀c
(
c ∈ TROUBLE⇒ ¬∃c′. P ` c c′

)
(4.34)

∀σ, χ (P ` init ∗ pc, σ, χ⇒ 〈pc, σ, χ〉 6∈ TROUBLE) (4.35)

Show

P, pc |=F x : m

By (4.33) and definition 11

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.

〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m

)
(4.36)

Show, from definition 10

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ m ∈ dom(χ(σ(x))))

Take σ, χ arbitrary.

Assume

∃p ∈ Paths(P ), p1, p2. p = p1 · 〈pc, σ, χ〉 · p2 (4.37)

m 6∈ dom(χ(σ(x))) (4.38)

Show contradiction.

Take p, p1, p2 such that by (4.37)

p ∈ Paths(P ) (4.39)

p = p1 · 〈pc, σ, χ〉 · p2 (4.40)
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By (4.40), (4.39) and (4.36)

∃pc′, σ′, χ′.
〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m
(4.41)

Assume pc′, σ′, χ′ such that by (4.41)

〈pc′, σ′, χ′〉 ∈ p1 (4.42)

P, pc′, σ′ `DT σ(x) : m (4.43)

By (4.43) and definition 7

∀χ
(
m 6∈ dom(χ(σ(x)))⇒ ∀c

(
P ` 〈pc′, σ′, χ〉 c⇒ c ∈ TROUBLE

))
(4.44)

By (4.38), (4.42), (4.40) and assumption 1

m 6∈ dom(χ′(σ(x))) (4.45)

By (4.45) and (4.44)

∀c
(
P ` 〈pc′, σ′, χ′〉 c⇒ c ∈ TROUBLE

)
(4.46)

By (4.42) and (4.40)

∃p3, p4, c. p = p3 · 〈pc′, σ′, χ′〉 · c · p4 · 〈pc, σ, χ〉 · p2

∨
∃p3. p = p3 · 〈pc′, σ′, χ′〉 · 〈pc, σ, χ〉 · p2

(4.47)

By (4.46) and (4.47)

∃p3, p4, c. p = p3 · 〈pc′, σ′, χ′〉 · c · p4 · 〈pc, σ, χ〉 · p2 ∧ c ∈ TROUBLE
∨

〈pc, σ, χ〉 ∈ TROUBLE
(4.48)

By (4.39)–(4.48), (4.34) and (4.35)

⊥

74



Although sound, observed and required features are universally quanti-
fied over actual program execution making them uncomputable so now we
develop a series of approximations that result in a computable static ap-
proximation.
The majority of the discussion in this chapter is independent of a par-

ticular language semantics—as long as the language has certain properties
the techniques are applicable—but to complete the discussion we develop a
dynamically typed toy language semantics with ideal properties and use it
to demonstrate that a computable approximation is achievable in practice.

4.7 Static approximation

Our approach to approximating observed and required features is to cal-
culate a basic set of features from syntactically evident duck tests (sec-
tion 3.10.1). These guarantee that a variable’s value will be tested for a
feature on any execution that reaches the variable.

Definition 12 (Syntactically evident duck test) `SDT

P, pc `SDT x : m

iff

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ P, pc, σ `DT σ(x) : m)

4.7.1 Required features

The basic set of required features follows directly from these tests. For exam-
ple, in an object oriented language like Python where a feature is a method,
a method call makes the presence of that method immediately required at
the call site. For example, P, 43 `SDT x : m and therefore P, 43 `RF x : m
in the following P :

42 . . .
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43 x .m()
44 . . .

Lemma 3.

P, pc `SDT x : m⇒ P, pc `RF x : m

The proof follows from definitions 9 and 12.

Under certain conditions a required feature can be propagated from one
program point to another. This is the case when, by a conspiracy of post-
domination, aliasing and language properties, guaranteed failure as a result
of a feature’s absence at one point guarantees eventual failure from the same
absence at another point. This occurs when the execution of one point man-
dates the execution of a later one—postdomination—and a variable at one
point refers to the same value as a variable at the other—aliasing—and is
better expressed in the following definition.

Definition 13 (Postdominating alias) pda

P ` pc′, x′ pda pc, x

iff:

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃σ′, χ′, p3, p4.

p2 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

)

Now that we have described the language requirements, let us state the
theorem formally and prove it.

Theorem 4 (The features required by a variable at a program point are
also required by the points for which it is a postdominating alias).

∀P, pc, x, pc′, x′,m
(

P, pc′ `RF x′ : m
P ` pc′, x′ pda pc, x

⇒ P, pc `RF x : m
)
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Proof.

Given

P, pc′ `RF x′ : m (4.49)

P ` pc′, x′ pda pc, x (4.50)

Show

P, pc `RF x : m

By (4.49) and definition 9

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc′, σ, χ〉 · p2 ⇒ ∃pc′′, σ′, χ′.

〈pc′′, σ′, χ′〉 ∈ 〈pc′, σ, χ〉 · p2

P, pc′′, σ′ `DT σ(x′) : m

)
(4.51)

By (4.50) and definition 13

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃σ′, χ′, p3, p4.

p2 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

)
(4.52)

Show, from definition 9

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.

〈pc′, σ′, χ′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′, σ′ `DT σ(x) : m

)

Take p, σ, χ, p1, p2 arbitrary.

Assume

p ∈ Paths(P ) (4.53)

p = p1 · 〈pc, σ, χ〉 · p2 (4.54)

¬∃pc′, σ′, χ′.
〈pc′, σ′, χ′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′, σ′ `DT σ(x) : m
(4.55)

Show contradiction.
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By (4.53), (4.54) and (4.52)

∃σ′, χ′, p3, p4.
p2 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)
(4.56)

Assume σ′, χ′, p3, p4 such that by (4.56)

p2 = p3 · 〈pc′, σ′, χ′〉 · p4 (4.57)

σ(x) = σ′(x′) (4.58)

By (4.57) and (4.54)

p = p1 · 〈pc, σ, χ〉 · p3 · 〈pc′, σ′, χ′〉 · p4 (4.59)

By (4.59), (4.53) and (4.51)

∃pc′′, σ′′, χ′′.
〈pc′′, σ′′, χ′′〉 ∈ 〈pc′, σ′, χ′〉 · p4

P, pc′′, σ′′ `DT σ′(x′) : m
(4.60)

By (4.60) and (4.57)

∃pc′′, σ′′, χ′′.
〈pc′′, σ′′, χ′′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′′, σ′′ `DT σ′(x′) : m
(4.61)

By (4.61), (4.59) and assumption 1

∃pc′′, σ′′, χ′′.
〈pc′′, σ′′, χ′′〉 ∈ 〈pc, σ, χ〉 · p2

P, pc′′, σ′′ `DT σ(x) : m
(4.62)

By (4.56)–(4.61) and (4.55)

⊥

Definition 13 says that a variable at a program point has a postdominating
alias at a second program point if, whenever the first point is reached on
any run of the program, the second point will be reached subsequently
in a configuration where the value of the first variable at the first point
is the same as the second variable at the second point. This does not
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preclude the possibility that the second point might additionally be reached
in a configuration where the variables do not have the same value. In
this way, postdominating aliases are weaker than must-aliases in which the
configuration at the program point would be universally quantified:

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∀σ′, χ′.∃p3, p4.

p2 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

)

Consider the situation

1 y = . . .
2 y .p()
3 do:
4 y .q()
5 y = . . .
6 while x

In this example P ` 4, y pda 2, y with definition 13 but not with the must-
aliasing variant above.
However in other situations, the approximation misses necessary fea-

tures. For example, in the following program P , it is easy to determine
that P, 3 `RF x : n and P, 5 `RF x : n. But ¬P ` 3, x pda 1, x and ¬P `
5, x pda 1, x as neither line 3 nor line 5 postdominate line 1 even though x3

and x5 do alias x1 so the fact that P, 1 `RF x : n is missed.

1 x = . . .
2 i f random():
3 x .n()
4 else :
5 x .n()

Despite this, the postdominating alias definition leads us towards a simple
algorithm for a computable approximation so we leave refining it for future
work section 8.3.2.

4.7.2 Observed features

Unlike the required features, the basic set of observed features does not fol-
low directly from the syntactically evident duck tests but, instead, requires
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that the test be on a dominating alias the of the variable in the basic set.
For example, P, 43 `SDT x : m and P, 44 `OF x : m but P, 43 6`OF x : m and
P, 44 6`OF x : n in the following P :

42 . . .
43 x .m()
44 x .n()
45 . . .

Dominating aliasing is just the mirror image of postdominating aliasing:

Definition 14 (Dominating alias) da

P ` pc′, x′ da pc, x

iff:

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃σ′, χ′, p3, p4.

p1 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

)

Lemma 4.

P, pc′ `SDT x′ : m
P ` pc′, x′ da pc, x

⇒ P, pc `OF x : m

Proof.

Given

∀σ, χ
(
P ` init ∗ 〈pc′, σ, χ〉 ⇒ P, pc′, σ `DT σ(x′) : m

)
(4.63)

∀p ∈ Paths(P ), σ, χ, p1, p2(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃σ′, χ′, p3, p4.

p1 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

)
(4.64)
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Show, from definition 11
∀p ∈ Paths(P ), σ, χ, p1, p2(

p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃pc′, σ′, χ′.
〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m

)

Take p, σ, χ, p1, p2 arbitrary.

Assume

p ∈ Paths(P ) (4.65)

p = p1 · 〈pc, σ, χ〉 · p2 (4.66)

¬∃pc′, σ′, χ′.
〈pc′, σ′, χ′〉 ∈ p1

P, pc′, σ′ `DT σ(x) : m
(4.67)

Show contradiction.

By (4.65), (4.66) and (4.64)

∃σ′, χ′, p3, p4.
p1 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)
(4.68)

Assume σ′, χ′, p3, p4 such that by (4.68)

p1 = p3 · 〈pc′, σ′, χ′〉 · p4 (4.69)

σ(x) = σ′(x′) (4.70)

By (4.69) and (4.63)

P, pc′, σ′ `DT σ′(x′) : m (4.71)

By (4.71) and (4.70)

P, pc′, σ′ `DT σ(x) : m (4.72)

By (4.68)–(4.72) and (4.67)

⊥
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Propagating observed features is the same as propagating required fea-
tures except that domination replaces postdomination. We omit the proofs
for brevity.

Theorem 5 (The observed features of a variable at a program point are
also observed features of the points for which it is a dominating alias).

∀P, pc, x, pc′, x′,m
(
P, pc′ `OF x′ : m
P ` pc′, x′ da pc, x

⇒ P, pc `OF x : m
)

4.7.3 Domination, postdomination and aliasing

We separate (post)dominating aliasing into (post)domination between pro-
gram points and aliasing as, individually, they have existing standard com-
piler analyses. However, this loses some precision as aliasing no longer has
access to the full configurations in the domination relation so we cannot be
as precise about when the variable at the program counters has to alias.
We must blindly insist that aliasing always be guaranteed, not just when it
coincides with the domination.
Real execution paths include the complete configuration at each point

so we also define an auxiliary function that converts the paths to simple
sequences of program counters which we use when we are only interested to
the relationship between executions and points in the source code.

Definition 15 (Configuration stripping) Strip

Strip : P
(
PathConfiguration

)
→ P (PathCounter)

Strip(ps) = {StripOne(p) | p ∈ ps}

where

StripOne(〈pc, σ, χ〉) = pc

StripOne(〈pc, σ, χ〉 · p) = pc · StripOne(p)

One program point postdominates another if, when the second is reached,
the first will definitely be reached from it.
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Lemma 5.

∀P, pc, pc′



(pc′, pc) ∈ postdoms(Strip(Paths(P )))
⇔

∀p ∈ Paths(P ), p1, p2, σ, χ


p = p1 · 〈pc, σ, χ〉 · p2 ⇒

∃σ′, χ′. 〈pc′, σ′, χ′〉 ∈ p2





Definition 16 (Must-aliasing) ∀∼

P ` pc, x ∀∼ pc′, x′

iff

∀p ∈ Paths(P ), p1, p2, p3, σ, χ, σ
′, χ′(

p = p1 · 〈pc, σ, χ〉 · p2 · 〈pc′, σ′, χ′〉 · p3 ⇒ σ(x) = σ′(x′)
)

Two variables at two program points are must-aliases if on every run of the
program, whenever they are both reached, the value of the first variable at
the first program point is the same as the value of the second variable at
the second program point.
To make practical analysis easier and to be able to reuse existing analysis

techniques we divided postdominating aliases into two separate parts. But
now we must check that they combine to form an approximation of the
original definition.

Lemma 6 (Postdomination combined with must-aliasing under-approxi-
mates postdominating aliasing).

∀P, pc, x, pc′, x′
(pc′, pc) ∈ postdoms(Strip(Paths(P )))

P ` pc, x ∀∼ pc′, x′
⇒ P ` pc′, x′ pda pc, x


Proof.

Assume arbitrary P , pc, x, pc′, x′.
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By lemma 5

∀p ∈ Paths(P ), p1, p2, σ, χ
(
p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃σ′, χ′. 〈pc′, σ′, χ′〉 ∈ p2

)
(4.73)

By definition 16
∀p ∈ Paths(P ), p1, p2, p3, σ, χ, σ

′, χ′(
p = p1 · 〈pc, σ, χ〉 · p2 · 〈pc′, σ′, χ′〉 · p3 ⇒ σ(x) = σ′(x′)

) (4.74)

Show, from definition 13
∀p ∈ Paths(P ), σ, χ, p1, p2(

p = p1 · 〈pc, σ, χ〉 · p2 ⇒ ∃σ′, χ′, p3, p4.
p2 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

)

Assume arbitrary p, σ, χ, p1, p2.

Assume

p ∈ Paths(P ) (4.75)

p = p1 · 〈pc, σ, χ〉 · p2 (4.76)

Show

∃σ′, χ′, p3, p4.
p2 = p3 · 〈pc′, σ′, χ′〉 · p4

σ(x) = σ′(x′)

By (4.75), (4.76), and (4.73)

∃σ′, χ′. 〈pc′, σ′, χ′〉 ∈ p2 (4.77)

By (4.77), (4.76) and (4.74)

∃σ′, χ′.
〈pc′, σ′, χ′〉 ∈ p2

σ(x) = σ′(x′)

Must-aliasing is not possible to establish in general [21] but we can use a
restricted approximation, kill analysis, to decide whether the same variable
refers to the same value at two different points. In practice, the results we
achieve with this limited approximation are quite good (chapter 7).
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Definition 17 (Kill analysis) NK

P ` NK(pc, pc′, x)

iff

∀σ, χ, σ′, χ′, σ′′, χ′′


P ` init ∗ 〈pc, σ, χ〉

P ` 〈pc, σ, χ〉 ∗ 〈pc′, σ′, χ′〉
P ` 〈pc′, σ′, χ′〉 ∗ 〈pc′′, σ′′, χ′′〉

⇒ σ(x) = σ′′(x)



Lemma 7 (Kill analysis under-approximates must-aliasing).

∀P, pc, pc′, x
(
P ` NK(pc, pc′, x) ⇒ P ` pc, x ∀∼ pc′, x

)

4.8 Control flow graph

Domination, postdomination and must-aliasing are defined over real execu-
tion traces so we still need to approximate them further. We will do this
using a control flow graph. We only define its signature here as the details
depend on the particular language semantics.

Definition 18 (Inter-procedural control flow graph) intercfg

intercfg : Program→ P (Counter×Counter)

We just assume it has been calculated using flow analysis (sections 1.4
and 2.5) and has the usual property that it is an over-approximation of
actual execution.

Assumption 2 (Control flow graph over-approximates execution).

∀P, pc, σ, χ, pc′, σ′, χ′
(
P ` 〈pc, σ, χ〉 〈pc′, σ′, χ′〉 ⇒

(
pc, pc′

)
∈ intercfg(P )

)
Similarly to definition 4 for actual execution, we define the set of paths

for a program based on the transitions in the control flow graph.
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Definition 19 (Inter-procedural CFG paths) InterCfgPaths

InterCfgPaths : Program→ P (PathCounter)

InterCfgPaths(P ) =
{
p

∣∣∣∣∣ p ∈ ReachingPaths(P )
∃p′, pc. p = p′ · pc ∧ pc ∈ counters(final)

}
where

counters(cs) = {pc | 〈pc, σ, χ〉 ∈ cs}

ReachingPaths(P ) = 1 ∪
{
p · pc · pc′

∣∣∣∣∣ p · pc ∈ ReachingPaths(P )
(pc, pc′) ∈ intercfg(P )

}

As the control flow graph over-approximates execution, the paths created
from it over-approximate the actual execution paths.

Lemma 8 (CFG paths over-approximate execution paths).

InterCfgPaths(P ) ⊇ Strip(Paths(P ))

Paths and their respective dominations and postdominations have the
following property which we use here to show that our conservative over-
approximation of real execution paths still renders a conservative under-
approximation of real dominators and postdominators.

Lemma 9.

∀Q,P ∈ P (PathN ) (P ⊆ Q ⇒ doms(Q) ⊆ doms(P ))

Lemma 10.

∀Q,P ∈ P (PathN ) (P ⊆ Q ⇒ postdoms(Q) ⊆ postdoms(P ))

The approximation is now computable but to be useful it must be a
conservative approximation. When one set of paths over-approximates
another—as in the case of our CFG paths over-approximating the real ex-
ecution paths—the dominator sets under-approximate each other. This is
precisely the relationship we need in order to conservatively approximate
postdominating aliasing using the control flow graph.
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Corollary 1 (CFG dominators under-approximate real dominators).

doms(InterCfgPaths(P )) ⊆ doms(Strip(Paths(P )))

Corollary of lemma 9 and lemma 8.

Corollary 2 (CFG postdominators under-approximate real postdomina-
tors).

postdoms(InterCfgPaths(P )) ⊆ postdoms(Strip(Paths(P )))

Corollary of lemma 10 and lemma 8.

4.9 Constrained CFG

The inter-procedural control flow graph in the previous section is com-
putable and conservative (assumption 2) but, in a higher order language,
flow analysis is required in order to achieve any degree of precision. In
section 2.5 we detailed the challenges of precise flow analysis. Indeed our
approach is intended to improve the precision of flow analysis to avoid the
expense of the more precise variants. So requiring a precise inter-procedural
control flow graph is counter-productive.
And yet our formalism, as defined so far, would appear to do so. The

approximations of domination and postdomination are defined in terms of
paths through the CFG. An imprecise CFG would lead to many actual
dominators and postdominators being excluded by the approximation as
call receivers are conservatively estimated to jump execution anywhere. So
the question is, can we still approximate them using an intra-procedural
control flow graph that no longer conservatively approximates execution?
Fortunately we can.

4.9.1 Postdomination on constrained graph remains sound

To prove this, we show that a set of paths constrained to include only a
specific subset of the nodes has the same postdomination relation as the
original set of paths when the domination relationship is between nodes of
the specific subset. If we make the subset be the set of program counters in a
particular procedure then any domination relationships within that method
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continue to be a conservative approximation even though calculating them
only takes intra-procedural control flow into account.
First we formalise what it means to constrain a path.

Definition 20 (Partition filter) Constrain

Given N partitioned such that N = N1 ]N2

ConstrainN1 : PathN → PathN1

ConstrainN1([]) = []

ConstrainN1(n · ns) =

n · ConstrainN1(ns) if n ∈ N1

ConstrainN1(ns) if n 6∈ N1

ConstrainN1 : P (PathN )→ P (PathN1)

ConstrainN1(ps) = {ConstrainN1(p) | p ∈ ps}

The function transforms a path so that it only includes nodes from a parti-
tion of the nodes. When the input path joins a node in the partition to one
outside it, the function transforms the path so that the node instead joins
to the next node in the path that is in the partition again. In this way the
function not only filters the path but closes the resulting gaps.
We use the following lemmas in our proofs later. They follow directly

from the definition of Constrain.

Lemma 11.

∀N = N1 ]N2, p ∈ PathN , n ∈ p (n ∈ N1 ⇒ n ∈ ConstrainN1(p))

Lemma 12.

∀N = N1 ]N2, p · p′ ∈ PathN(
ConstrainN1(p · p′) = ConstrainN1(p) · ConstrainN1(p′)

)
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Lemma 13.

∀N = N1 ]N2, p ∈ PathN , n (n ∈ ConstrainN1(p)⇒ n ∈ p)

Lemma 14.

∀N = N1 ]N2, p ∈ PathN , n ConstrainN1(p) = p1 · n · p2 ⇒
∃p3 · n · p4.ConstrainN1(p3) = p1 ∧ ConstrainN1(p4) = p2



Our theory states that a set of constrained paths maintains all the domina-
tion relationships of the original paths when between nodes in the contrain-
ing set. We only prove this for postdomination; the proof for domination
takes the same form.

Theorem 6.

∀N = N1 ]N2, Q ∈ P (PathN )
(postdoms({ConstrainN1(p) | p ∈ Q}) = postdoms(Q) ∩ (N1 ×N1))

Proof.

Take arbitrary N,N1, N2 and Q such that

N = N1 ]N2 (4.78)

Q ∈ P (PathN ) (4.79)

Show

postdoms(ConstrainN1(Q)) ⊆ postdoms(Q) ∩ (N1 ×N1) (4.80)

Take arbitrary n, n′ such that

(n, n′) ∈ postdoms(ConstrainN1(Q)) (4.81)

Show

(n, n′) ∈ postdoms(Q) ∩ (N1 ×N1)
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By (4.81), definition 20 and definition 6

(n, n′) ∈ N1 ×N1 (4.82)

Take arbitrary p ∈ Q such that

∃p1, p2.p = p1 · n′ · p2 (4.83)

Show

n ∈ p2

By (4.83) and lemma 12

ConstrainN1(p) = ConstrainN1(p1) · ConstrainN1(n′) · ConstrainN1(p2)
(4.84)

By (4.84) and (4.82)

ConstrainN1(p) = ConstrainN1(p1) · n′ · ConstrainN1(p2) (4.85)

By (4.85) and (4.81)

n ∈ ConstrainN1(p2) (4.86)

By (4.86) and lemma 13

n ∈ p2 (4.87)

Show postdoms(Q) ∩ (N1 ×N1) ⊆ postdoms(ConstrainN1(Q)).

Take arbitrary n, n′ such that

(n, n′) ∈ postdoms(Q) ∩ (N1 ×N1) (4.88)

Show

(n, n′) ∈ postdoms(ConstrainN1(Q))

90



Take arbitrary p ∈ ConstrainN1(Q) such that

∃p1, p2.p = p1 · n′ · p2 (4.89)

Show

n ∈ p1

By definition

∃p′.p′ ∈ Q ∧ p = ConstrainN1(p′) (4.90)

By (4.90) and lemma 14

∃p3, p4.p
′ = p3 · n′ · p4 (4.91)

ConstrainN1(p3) = p1 ∧ ConstrainN1(p4) = p2 (4.92)

By (4.91), (4.88) and definition 6

n ∈ p4 (4.93)

By (4.93), (4.92) and lemma 11

n ∈ p2 (4.94)

We define the set of control flow graphs paths within a procedure as the
constrained version of the paths that include inter-procedural control flow

Definition 21 (Intra-procedural path approximation) IntraCfgPaths

IntraCfgPaths(P, proc) = Constrain{pc | pc∈proc}(InterCfgPaths(P ))

and prove that postdominators calculated from these paths conservatively
approximate real postdomination.

Theorem 7.
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Assuming some function procedures(P ) that ranges over the procedures
defined in the argument

∀P, proc ∈ procedures(P )(
postdoms(IntraCfgPaths(P, proc)) ⊆ postdoms(Paths(P )))

Proof.

Assume arbitrary P and proc.

By theorem 6 and definition 21
postdoms(IntraCfgPaths(P, proc)) =

postdoms(Constrain{pc | pc∈proc}(InterCfgPaths(P )))
∩{(pc, pc′) | pc ∈ proc, pc′ ∈ proc}

(4.95)

By (4.95)

postdoms(IntraCfgPaths(P, proc)) ⊆
postdoms(Constrain{pc | pc∈proc}(InterCfgPaths(P )))

(4.96)

By (4.96) and corollary 2

postdoms(IntraCfgPaths(P, proc)) ⊆ postdoms(Strip(Paths(P )))

We have defined a computable approximation of postdomination based
both and inter-procedural and an intra-procedural control flow graph. We
have also defined an approximation of must-aliases through kill analysis.
As a quick sanity check we prove the following theorem that the various

approximations combine to form an approximation of required features.

Theorem 8 (NK and postdoms(IntraCfgPaths(P, proc)) approximates `RF).

92



∀P, proc ∈ procedures(P ), pc, pc′, x,m

P, pc′ `RF x : m
pc ∈ proc
pc′ ∈ proc

(pc′, pc) ∈ postdoms(IntraCfgPaths(P, proc))
P ` NK(pc, pc′, x)

⇒ P, pc `RF x : m


Proof.

Assume arbitrary P , proc, pc, pc′, x and m.

Given

P, pc′ `RF x : m (4.97)

pc ∈ proc (4.98)

pc′ ∈ proc (4.99)

(pc′, pc) ∈ postdoms(IntraCfgPaths(P, proc)) (4.100)

P ` NK(pc, pc′, x) (4.101)

Show that

P, pc `RF x : m

By lemma 7 and (4.101)

P ` pc′, x ∀∼ pc, x (4.102)

By theorem 7 and (4.100)

(pc′, pc) ∈ postdoms(InterCfgPaths(P )) (4.103)

By corollary 2 and (4.103)

(pc′, pc) ∈ postdoms(Strip(Paths(P ))) (4.104)
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By lemma 6, (4.104) and (4.102)

P ` pc′, x pda pc, x (4.105)

By theorem 4, (4.97) and (4.105)

P, pc `RF x : m (4.106)

All that now remains for a computable approximation of dominating and
postdominating aliasing, and therefore observed and required features, is
computable approximation of the kill analysis. This is dependent on the
particular language so now we define one, loosely based on Python, as a
case study.

4.10 Case study: Imperative, object-oriented
language

In this section we define a language that, though based on Python, is ide-
alised. By this we mean that it includes all of the features needed to allow
our approach to function and none of the features that would prevent it
(section 3.5). Although some ‘pathologically dynamic’ features have been
excluded, the language is still dynamically typed in the duck typed manner
that Python is so well known for. It remains similar enough to Python to
model the cases that make type inference difficult in a dynamically typed
language (section 1.3). Similarities include:

• duck typed semantics

• class based value creation

• values are objects

• variables are mutable

• execution is input-dependent

The most obvious difference is the syntax which is three-address form. As
such, the language can be considered an intermediate language into which
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Python programs are translated. Three-address form is convenient as we
can reason directly using the framework laid out in this chapter so far.
The most important differences are that the features of an object are fixed

and, in particular, are dictated by classes which are immutable. In Python
classes are first-class, mutable objects and features can be added and re-
moved freely from the instances they create. When we come to evaluate our
implementation on fully-fledged Python (chapter 7) we show that ignoring
this difference does not fatally harm the result.
Another notable difference is the absence of exceptions. While exceptions

are just a control flow mechanism and therefore would appear as extra tran-
sitions in the control flow graph, an intra-procedural analysis would have
to approximate the transitions conservatively meaning that every statement
could throw an exception and that exception could flow control anywhere.
The result is that no program point would ever be a postdominator render-
ing our analysis impotent. In practice (section 5.5) we ignore exceptions as
one would have to be used for polymorphic path selection before ignoring
it could harm our result. We believe this to be rare. Our evaluation of our
implementation on fully-fledged Python found no cases where such a use of
exceptions affected the result.
A summary of some of the differences between Python and our toy lan-

guage are:

• our classes are immutable

• our objects’ features are fixed

• our language has no facility for runtime code generation (eval etc.)

• our language does not permit reflection

• our language does not have exceptions

• all our code is in methods

We adjust and extend the base sets, S, defined in section 4.2, with the
sets Sπ, to include the specifics of the language.
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Figure 4.7: Toy language syntax

trm ::= terms:
x, y, self variable
x.m(y) method call
n() construction
read input

stmt ::= statements:
x= trm assignment
if x: pc conditional
returnx method return

cls ::= classes:
class n : meth

meth ::= methods:
defm(self, x ): stmt returnx

Sπ

stmt ∈ Statement statements

MethodBody = Counter→ Statement method bodies

Class = Feature→MethodBody classes

ν ∈ Value = Feature→MethodBody objects

P ∈ Program = ClassId→ Class programs

The heap is assumed to be pre-populated with three special values, ιF ,
ιT and ιN , that represent False, True and None, respectively. These values
have significance in the conditional statement (E-IfTrue and E-IfFalse
in figure 4.8). There is only one configuration, cω, in TROUBLE, and all
failing duck tests move the program to this configuration.
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Definition 22 (Execution, cont.)  

P (pc) ≡ x= y σ ≡ σ′.ϕ σ′′ ≡ σ′.ϕ[x 7→ ϕ(y)]
P ` 〈pc, σ, χ〉 〈pc+ 1, σ′′, χ〉

E-Var

P (pc) ≡ z=x.m(y) ι ≡ σ(x) dom(χ(ι)) 3 m
σ′ ≡ σ.ϕ ϕ ≡ (self 7→ ι, x 7→ σ(y), base 7→ pc) pc ≡ χ(ι)(m)()

P ` 〈pc, σ, χ〉 〈pc′, σ′, χ〉
E-Call

P (pc) ≡ z=x.m(y) m 6∈ dom(χ(σ(x)))
P ` 〈pc, σ, χ〉 cω

E-CallTrouble

P (pc) ≡ x=n() ι 6∈ dom(χ) n ≡ {m}
χ′ ≡ χ[ι 7→ {m}] σ ≡ σ′.ϕ σ′′ ≡ σ′.ϕ[x 7→ ι]

P ` 〈pc, σ, χ〉 〈pc+ 1, σ′′, χ〉
E-Constructor

P (pc) ≡ x= read σ ≡ σ′.ϕ ι ≡ arbitrary σ′′ ≡ σ′.ϕ[x 7→ ι]
P ` 〈pc, σ, χ〉 〈pc+ 1, σ′′, χ〉

E-Read

P (pc) ≡ if x: pct σ(x) 6= ιF σ(x) 6= ιN

P ` 〈pc, σ, χ〉 〈pct, σ, χ〉
E-IfTrue

P (pc) ≡ if x: pct σ(x) ≡ ιF ∨ σ(x) ≡ ιN
P ` 〈pc, σ, χ〉 〈pc+ 1, σ, χ〉

E-IfFalse

P (pc) ≡ returnx σ ≡ σ′.ϕ′.ϕ
pc′ ≡ ϕ(base) P (pc′) ≡ z= v.m(u) σ′′ ≡ σ′.ϕ′[z 7→ σ(x)]

P ` 〈pc, σ, χ〉 〈pc′ + 1, σ′′, χ〉
E-Return

Figure 4.8: Operational semantics for toy language

4.10.1 CFG-based kill analysis

In our language, with mutable variables, we can approximate an alias anal-
ysis by looking at statements that modify the stack. Kill analysis can be
performed intra-procedurally by establishing the absence of various mutat-
ing statements.
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Definition 23 (Intra-procedural kill analysis) IntraNK

P ` IntraNK(pc, pc′, x)

iff

∃proc ∈ procedures(P ).∀p, p1, p2, p3, pc
′′.

pc ∈ proc
pc′ ∈ proc

∧


p ∈ IntraCfgPaths(P, proc)
p = p1 · pc · p2 · pc′ · p3

pc′′ ∈ pc · p2

⇒

∀y.P (pc′′) 6= x= y

∀n.P (pc′′) 6= x=n()

P (pc′′) 6= x= read

∀v, w,m.P (pc′′) 6= x= v.m(w)



Definition 23 ensures that two appearances of a variable only must-alias
if they appear in the same procedure, and no intra-procedural control-flow
path exists that includes any of several prohibited statements. The pro-
hibited statements are those that, according to their operational semantics,
can modify the top stack frame (figure 4.8). The conditions in definition 23
only prohibit them if they target the variable whose must-aliasing is in
question. For variable assignment (E-Var), constructor assignment (E-
Constructor) and input (E-Read) it is obvious from the semantics that
the modification to the top stack frame is limited to the target variable’s
value so it is safe to allow intervening assignments to unrelated variables.
Calls (E-Call) insert a completely new stack frame but, from the syntax

(figure 4.7) we know that every call has a matching return statement (E-
Return) which restores the original top of the stack with the exception that
it may change that frame’s value for the call return value target. Therefore
we can treat calls in the same way as the other assignments.
Although return statements change the stack, we do not include them

in the prohibited statements as any intra-procedural path is guaranteed to
end in a return statement and so cannot appear before pc′ as required in
definition 23.

Lemma 15 (IntraNK under-approximates NK).

∀P, pc, pc′, x
(
P ` IntraNK(pc, pc′, x) ⇒ P ` NK(pc, pc′, x)

)
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4.10.2 We have a reasonable approximation

In the previous sections we have approximated the definition of required fea-
tures in stages by breaking it into pieces, each of which has a computable
approximation. Most of these pieces are independent of a particular pro-
gramming language, but approximating must-aliasing requires us to define
a specific language which we used to approximate that last piece.
Now we show that these separate, computable approximations combine

to produce a sound approximation of our goal, required features. First,
we must have some way to obtain the basic set of required features directly
from the syntax. We show that this is the case for our toy language from
its operational semantics.

Lemma 16 (Some duck tests are syntactically apparent).

∀P, pc, x,m (∃u, v. P (pc) ≡ u=x.m(v) ⇒ P, pc `SDT x : m)

Proof.

Take P , pc, x, m arbitrary.

Given

∃u, v. P (pc) ≡ u=x.m(v) (4.107)

Show

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ P, pc, σ `DT σ(x) : m)

Take σ, χ arbitrary.

Assume

P ` init ∗ 〈pc, σ, χ〉 (4.108)

Show

pc 6∈ {pcf | 〈pcf , σ, χ〉 ∈ final}

∀χ (m 6∈ dom(χ(σ(x)))⇒ ∀c (P ` 〈pc, σ, χ〉 c⇒ c ∈ TROUBLE))

Take χ′ arbitrary.

Assume

m 6∈ dom(χ′(σ(x))) (4.109)
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Show

∀c
(
P ` 〈pc, σ, χ′〉 c⇒ c ∈ TROUBLE

)
Take c arbitrary.

Assume

P ` 〈pc, σ, χ′〉 c (4.110)

Show

c ∈ TROUBLE

By (4.110), (4.109), (4.107) and definition 22

c = cω

By (4.107) and definition 22

pc 6∈ {pcf | 〈pcf , σ, χ〉 ∈ final}

Finally we put all the parts together to approximate required and ob-
served features on an intra-procedural control-flow graph in our toy lan-
guage.

Required features

Theorem 9 (We can approximate required features).

∀P, proc ∈ procedures(P ), pc, pc′, x,m

∃u, v. P (pc′) ≡ u=x.m(v)
pc ∈ proc
pc′ ∈ proc

(pc′, pc) ∈ postdoms(IntraCfgPaths(P, proc))
P ` IntraNK(pc, pc′, x)

⇒ P, pc `RF x : m


Proof.

Assume arbitrary P , pc, pc′, x and m.
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Given

∃u, v. P (pc′) ≡ u=x.m(v) (4.111)

pc ∈ proc (4.112)

pc′ ∈ proc (4.113)

(pc′, pc) ∈ postdoms(IntraCfgPaths(P, proc)) (4.114)

P ` IntraNK(pc, pc′, x) (4.115)

Show that

P, pc `RF x : m

By lemma 15 and (4.115)

P ` NK(pc, pc′, x) (4.116)

By (4.111) and lemma 16

P, pc′ `SDT x : m (4.117)

By (4.117) and lemma 3

P, pc′ `RF x : m (4.118)

By theorem 8, (4.118), (4.112)–(4.114) and (4.116)

P, pc `RF x : m (4.119)

We have shown that a computable, sound approximation of required
features exists for a language and that, for well formed programs written
in that language, the variables are guaranteed to have the features required
by the approximation.
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4.11 Contraindication

Our motivation for inferring observed and required features is to use them
to improve the precision of the concrete types inferred using an inter-
procedural flow analysis, a technique we have called contraindication.
A concrete type is set of abstract values for an expression. Concrete

types are sound if they guarantee that expressions only evaluate to values
described by the abstract values in the type. Exactly what form these ab-
stract values take varies according to the particular language semantics. In
the sets S+, defined in section 4.2, we called these abstract values ‘classes’.
What the class interfaces range over is language-dependent and left un-
defined for now. For an object-oriented language like our toy language
(section 4.10) they might map method names to method bodies.
In our formalism, we decide whether a concrete type describes a value

based on whether the value’s interface matches that of any of the classes.
This makes it straightforward to contraindicate members of the concrete
type based on the observed and required features inferred for the expression.

Definition 24 (Valid concrete type) |=C

P, pc |=C x : t

iff

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ ∃n ∈ t. dom(n) = dom(χ(σ(x))))

We use concrete types from flow-based type inference as the types to
refine using contraindication. We do not define a flow analysis in this work.
We assume such an analysis exists for the language in question.

Definition 25 (Flow-based type inference) `CFA

P, pc `CFA x : t

As described in section 2.5 there are many flow analysis variations with

102



different trade-offs, some more suitable for some languages than other. We
just assume that any such analysis infers sound concrete types.

Assumption 3 (Flow-based type inference produces sound types).

∀P, pc, x, t (P, pc `CFA x : t ⇒ P, pc |=C x : t)

We also assume the semantics of the language are such that a value’s
interface—its set of features—is not allowed to diverge from that dictated by
its creation class. This ensures that any value at the expression supports at
least the intersection of the feature defined by each member of the concrete
type. This is what enables contraindication to bound the concrete type
using the interface inferred from the duck tests. Contraindication is only
sound for languages where a value’s features are fixed in this way.

Definition 26 (Contraindicated flow type) `CI

P, pc `CI x : t

iff

∃t′.
P, pc `CFA x : t′

t = {n | n ∈ t′, ∀m (P, pc |=F x : m ⇒ m ∈ dom(n))}

Theorem 10 (Contraindicated types remain sound).

∀P, pc, x, t
(
P, pc `CI x : t⇒ P, pc |=C x : t

)
Proof.

Given

P, pc `CI x : t (4.120)

Show

P, pc |=C x : t
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By (4.120) and definition 26

∃t′.
P, pc `CFA x : t′

t = {n | n ∈ t′,∀m (P, pc |=F x : m ⇒ m ∈ dom(n))}
(4.121)

Show

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ ∃n ∈ t. dom(n) = dom(χ(σ(x))))

Assume arbitrary σ, χ and

P ` init ∗ 〈pc, σ, χ〉 (4.122)

Show

∃n ∈ t. dom(n) = dom(χ(σ(x)))

Assume t′ such that

P, pc `CFA x : t′ (4.123)

t =
{
n
∣∣ n ∈ t′, ∀m (P, pc |=F x : m ⇒ m ∈ dom(n))

}
(4.124)

By (4.123), (4.122) and assumption 3

∃n ∈ t′. dom(n) = dom(σ(χ(x))) (4.125)

By (4.125), take n such that

n ∈ t′ (4.126)

dom(n) = dom(χ(σ(x))) (4.127)

By (4.124) and (4.126)

∀m (P, pc |=F x : m⇒ m ∈ dom(n)) ⇒ n ∈ t (4.128)

Take m arbitrary.
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Assume

P, pc |=F x : m (4.129)

Show

m ∈ dom(n)

By (4.129) and definition 10

∀σ, χ (P ` init ∗ 〈pc, σ, χ〉 ⇒ m ∈ dom(χ(σ(x)))) (4.130)

By (4.130) and (4.122)

m ∈ dom(χ(σ(x))) (4.131)

By (4.131) and (4.127)

m ∈ dom(n) (4.132)

By (4.129)–(4.132)

∀m (P, pc |=F x : m⇒ m ∈ dom(n)) (4.133)

By (4.133) and (4.128)

n ∈ t (4.134)

By (4.132) and (4.127)

∃n ∈ t. dom(n) = dom(χ(σ(x)))

Theorem 10 means that contraindication safely refines concrete types as
long as those types are, themselves, sound. Although contraindication is
defined in terms of the actual features of a variable, which is undecidable,
we can under approximate these by approximating observed and required
features and assuming a well formed program.
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4.12 Prerequisites

In section 4.10 we applied our formalism to a Python-inspired toy language
and in the next chapter we explore the challenges of mapping those concepts
onto Python proper. But before we do so, we revisit the general, language
independent concepts and summarise the prerequisites that make them ap-
plicable. This is important because, although we have only applied our
techniques to object oriented languages so far, we designed our technique
to avoid depending on object orientation in any way. We believe that the
techniques apply to other language paradigms equally well as long as the
language meets the prerequisites (section 8.5).

Approximating required features Required features have applications
outside contraindication; Lindahl and Sagonas [23] use something similar in
their success types for type checking. Therefore we take care to separate the
prerequisites needed to approximate required features from the prerequisites
needed to use required features for contraindication. It is worth noting that
these prerequisites are needed for our approximation of required features
that starts with a basic set and propagates its members. Other approxima-
tions may have different prerequisites.

Trouble Some definition of detectable failure, TROUBLE, that, should it
occur, indicates an ill-formed program.

TROUBLE does not necessarily have to halt the program. Despite the
name, ‘required feature’ does not mean the feature is actually required
in any absolute sense. It is only required with respect to the current
definition of TROUBLE chosen to suit the application at hand. The
promise a required feature makes about the consequence of a missing
feature is that TROUBLE occurs, nothing more. Then it is up to the
application of required features to decide whether TROUBLE implies
halting.

For a hint at how general we think this might be, see the discussion
on squeaking in section 8.2.

Basic set Some basic set of required features inferred from syntactically
evident duck tests; syntax that the language semantics guarantees
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will cause the program to encounter TROUBLE if the required feature
is missing.

Fixed features If the basic set is to be propagated further, the features
supported by value must be fixed throughout its lifetime. Were this
not the case a feature could be required in the basic set after it had
been added to the value but propagated to a point before it was added
where it is no longer required.

Postdomination It must be possible to calculate a conservative under-approximation
of the postdominators of a program point.

Must-aliasing It must be possible to calculate a conservative under-approximation
of which variables must-alias which others. This may be very re-
stricted, as in the later parts of our formalism where the relation is
restricted to instances of the same variable name within a single pro-
cedure.

Observed features have the same prerequisites except that postdomination
becomes domination.

Contraindication Contraindication uses required features so all the pre-
requisites above apply in addition to a few others.

Upper bound Contraindication narrows down the possible classes of value
at a variable using the features any such value must have. But in order
to perform the narrowing there must be a way to detect that a class
and a set of features are incompatible. As a general prerequisite, that
assumes little about the nature of classes and nothing about features,
we just say that the classes must define the upper bound of the features
any of their values can support. A set of features that is not a subset
of this upper bound is incompatible with that class and the class can
be excluded from the type.

Well formed Contraindication assumes a well formed program which means
one that will not lead to TROUBLE. The contraindicated type is only
sound under this assumption. Exactly what well formed means, how-
ever, depends on the definition of TROUBLE. An obvious definition
is to make TROUBLE a halting type error state, making well formed
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a promised that the program will not halt in an type error state.
However there may be situations where some other definition is more
convenient or, as in the case of Python in chapter 5, required by the
semantics of the language. What is important is that whatever defi-
nition of TROUBLE is chosen, it must be reasonable in that situation
for the programmer to be able to promise it does not occur.

Flow analysis Contraindication requires concrete types, in the form of sets
of classes, that we can compare the sets of required features against.
Furthermore, the concrete types must be sound. This generally re-
quires some form of flow-analysis-based type inference. We do not
mandate any particular level of precision. A trivially imprecise anal-
ysis could just infer that all values are instances of some class in the
system. This amounts to using only required features to infer types.

All the analyses including the flow analyses have a further prerequisite

Closed world As is common in the dynamically typed sphere where static
type annotations cannot not act as partial result stores, the analyses
rely on having all code that makes up the running system available
for analysis.
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5 Practical language

In section 4.10 we use an idealised duck-typed toy language to demonstrate
the concepts of our formalism. This language has all the properties nec-
essary to make our technique sound and, just as importantly, it omits any
properties that make it unsound. In this chapter we explore the challenges
and compromises of mapping the concepts of chapter 4 onto a real-world
language.

5.1 Python

Python, unlike our Python-inspired toy language from section 4.10, is a ma-
ture, practical, duck-typed language rich with features that make the design
of semantically meaningful development tools difficult. Whereas we could
tailor the features of our toy language precisely to match our prerequisites
(section 4.12), Python’s features developed organically over time with no
regard for static analysis. While complicating our task, this also makes it
precisely the kind of language most likely to benefit from such work.
There are disparities between the guarantees our approach requires and

the guarantees Python provides, but all is not lost. Python may provide
rich, and sometimes pathologically dynamic, features but that does not
mean people use them [9]. Even if they do—studies disagree [19]—our
results show they do not use such features in a way that coordinates poly-
morphism, leaving our inferred types largely intact. Furthermore, most of
the important concepts can be mapped directly with a little care. We base
our toy language on Python precisely to explore this mapping.
Although the toy language in section 4.10 uses an intermediate three-

address form with only variables having required features, Python can have
arbitrarily nested expressions, each with their own required features. Map-
ping concepts between the two is not a problem, however, as such expres-
sions can be converted to three-address form using temporary variables. For
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example,

func(x .y()) .m()

becomes

temp_1 = x.y()
temp_2 = func(temp_1)
temp_2.m()

In the rest of our discussion, as in the formalism, we talk about variables
on the understanding that this might mean an expression that has been
converted in this way.

5.2 Defining TROUBLE

Deciding on an acceptable definition of TROUBLE is subtly difficult. The
definition is intertwined with others:

• Whatever the definition, it must allow syntactically evident duck tests
to be inferred directly from the syntax; the language semantics must
guarantee TROUBLE should the value referenced at the syntactic ele-
ment not support the required feature.

• Well-formed programs are defined in terms of TROUBLE: any program
that can never encounter TROUBLE is well formed; all others are ill
formed. Whatever the definition of TROUBLE, such an assumption
needs to be sensible.

In the semantics of toy Python (figure 4.8) TROUBLE is a halting state
entered if a program attempts to call a method that a value does not possess.
Real Python has similar semantics: accessing a method or field that does
not exist in the object raises an AttributeError exception. However, there is
an important difference between the toy language and Python: in Python
the program can catch the exception in an exception handler and continue
execution.
Assuming we want to use the presence of method calls in the syntax

to produce our basic set—we do—our definition of TROUBLE is that an
AttributeError was raised. A well-formed program is now defined as one
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that will never raise such an error. The question becomes, is it reasonable
for contraindication to assume a program does not raise an AttributeError ?
Let us first assume the halting case where the exception is not caught

and propagates to the top of the program, halting it with a run-time type
error. We argue that it is entirely reasonable to assume an input program
does not allow this to happen. Any mature project must have all but extin-
guished the possibility of run-time type errors halting the program. Even
during development, any sensible program will be largely type correct, not
to mention any libraries it depends on, which includes the system libraries.
The assumption that the input program be type correct is not unique to our
approach, in fact it is almost universal in program analysis tools. Even in
statically typed languages, development tools do not promise to give correct
results if the input program does not pass the static type checker, a high
bar.

5.2.1 No reflection

But we are not just dealing with a halting case: an AttributeError can be
caught and handled like so:

1 x .n()
2 try :
3 x .m()
4 except AttributeError :
5 pass

This is a form of reflection or introspection, and amounts to a trial-and-error
attempt to use a feature of a value and trap then handle the run-time type
error if it fails. But we have to assume the input program never raises an
AttributeError , regardless of any subsequent handling. If the code, never-
theless, did use this kind of reflection, it could lead to unsound contraindi-
cation types as classes are excluded on the basis of methods that are not
really present.
The problem occurs because the unsupported feature is actually required;

the input program was ill formed by our definition of TROUBLE. Assume
that x supports n but not m: the analysis determines x.m() is required at
x3 and, as x3 is a postdominating alias of x1, that feature m is also required
at x1.
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Contraindication, assuming that the program is in fact well formed, uses
theorem 1 to decide that any value at x1 must support feature m and, as
a result, removes any class without that feature from the type inferred by
flow analysis. But it is wrong, because values without m can arrive at x1,
just not in well-formed programs.
Whether it is sensible to assume that this behaviour does not occur is

more subjective and this remains one of the weaknesses of contraindication
when applied to Python. We argue that failing to guarantee correct results
in the presence of reflection is not unique to our approach. Moreover, even
though this behaviour does occur in real programs, our results indicate that
it does not affect the correctness of the contraindicated types in practice
(chapter 7).

5.3 The basic set

The basic set (see sections 4.10.2 and 4.12) comes from syntactically evident
operations that must agree with our definition of TROUBLE: they guarantee
TROUBLE if the value is missing the feature. In Python this corresponds
to the syntax for reading from an attribute: an expression followed by a
dot and then the name of the attribute without any assignment on the
right-hand side. For example:

expression . feature_name

Looking back at our definition of syntactically evident (section 3.10.1) the
expression, expression , is the syntactic element being typed and the at-
tribute, feature_name, is the feature being used. Python’s semantics guar-
antee that attempting to access an attribute will raise an AttributeError if
it does not exist in the object1, which is the property we need for a required
feature.
At this point we face a problem because another prerequisite is that a

value’s features are fixed for its lifetime. However, in Python, non-method
attributes—hereafter called fields—can be added to objects at any time. We

1Python hackers may be shaking their heads at this point. There are ways to hook
arbitrary requests for an attribute and implement custom behaviour that, if the at-
tribute is missing, may choose to do something other than raise an AttributeError .
We consider this one of Python’s pathologically dynamic features akin to modifying
the object’s interface on the fly, a behaviour we forbid entirely (see section 5.4).
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work around the problem in the next section by restricting our basic set as
best we can to include only method attributes and not fields.

5.4 Fixed features

Propagating the basic set to other program points relies on the set of features
supported by a value—its interface—to be fixed throughout its lifetime.
Otherwise a required feature might be propagated from a point where it is
required to a point before the feature has been added to the interface, a
place where the feature is no longer required.
Our toy language was ideal and its semantics did not provide a way to

modify a value’s set of methods—the only type of feature a value could
possess. Python is not ideal. In particular, fields, a type of feature, can
only be added after the object is created. Python classes do not have a
way to declare that their instances have a particular field. Instead, they
spring into existence when they are assigned to, often, but not only, in the
constructor. The following example demonstrates why this is a problem.

1 x = X()
2 # is ’a ’ required in ’x ’ here?
3 x .a = 7
4 print x .a

The field access on line 4 would make a a required feature of x4 in the
basic set. The statement on line 4 postdominates the other statements and
x4 must-aliases the other instance of x, so the analysis propagates a as a
required feature of x to the other statements. However, the field was added
at line 3, so is not, in fact, required earlier.
Our solution is to exclude fields from the basic set and only include meth-

ods because methods cannot be added to an object after it is created.2 Doing
so requires us to compromise the definition of syntactically evident slightly.

2One again, Python hackers are frowning. Technically it is possible to change
the methods of an already created object, a technique delightfully known as ei-
ther Monkey Patching or Duck Punching (http://www.ericdelabar.com/2008/05/
metaprogramming-javascript.html). However, doing so requires using metaclass
manipulation (http://stackoverflow.com/a/2982/67013), is exceedingly rare, and
falls into the category of pathologically dynamic behaviours that we do not attempt
to model.
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We filter methods from fields by whether the attribute is immediately
called or not. In other words, if this is taken to be a method:

e .m()

and we add it to the basic set as e requiring feature ‘method m’ while this
is taken to be a field e. f, we ignore it. But this distinction is not perfect
because the two categories are not as separate as they appear here.
Sometimes the field syntax is actually used to access a method. Methods

are first-class objects in Python so a program can read a method as a callable
closure, without calling it, using the field syntax:

v = x.m
v() # cal l s method m

Method m is still required by variable x but, because we use calls to dis-
tinguish fields from methods, we miss this one. However, as we show in
chapter 4, it is safe to under-approximate required features and, in general,
any sound analysis will be an under-approximation.
More seriously, sometimes the method syntax is actually used to access a

field. Many objects in Python, including first-class functions, are callable.
A callable object is just an object and can be assigned to a field of another
object. If this object is subsequently called directly from the attribute, the
syntax is identical to the method call:

def f () :
print "Hello World!"

x = X()
x .m = f
x . f ()

This is a more serious problem, as it causes us to over-estimate the required
features with the potential for unsound contraindication. We have not yet
found a solution to this problem.
Both issues are caused because we compromised the meaning of syntacti-

cally evident when we filtered fields. The definition in section 3.10.1 requires
that the syntax uniquely identify the feature being used but, now that we
have separated fields and methods into two separate categories of feature,
the syntax is supposed to distinguish the categories uniquely. A method a
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should be syntactically distinguishable from a field a. We achieve something
very close to this ideal using the presence of a call to distinguish the cases
but, as we can see, there is some overlap. If the language had truly separate
field and method attribute syntax, the problem would not occur.

5.5 Postdomination

Postdomination should be simple to under-approximate; in section 4.9.1 we
show how postdomination calculated even on an intra-procedural control
flow graph remained a conservative under-approximation. We could just
construct such a graph for each Python procedure and apply a standard
postdomination algorithm, except that this algorithm would not find any
postdominators.
The problems is that the semantics of Python allow any statement to raise

an exception. For example, the interpreter signals the system has run out of
memory with a MemoryError. This is not a deterministic event, so a control
flow graph that truly over-approximates execution must include a transition
from every statement to the nearest exception handler (which may be the
end of the program) in addition to the statement’s other transitions. This
extra transition prevents postdomination.
Even if we exclude such interpreter exceptions from the control flow graph

and only consider exceptions raised with an explicit raise statement, we
still have a problem of what to do at call sites. We want to use an intra-
procedural control flow graph, but doing so means we cannot tell if a given
call site might call code that raises an exception—there are no exception
specifications in Python.
We argue that it is reasonable to ignore exceptions in our analysis. For an

exception to affect our contraindicated type it would coordinate polymor-
phism. By that we mean that the programmer has to have used exceptions
intentionally as a control flow mechanism to direct polymorphic types along
different paths through. One obvious example is the reflective behaviour we
have already forbidden (section 5.2.1).
But other situations may be more subtle:

42 def feed_rabbit(a) :
43 i f a. favourite_food == "Rabbit" :
44 a. eat("Rabbit")
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45 else :
46 raise IncompatibleMealError()
47

48 i f random():
49 pet = Dog()
50 else :
51 pet = Chicken()
52

53 pet . stroke ()
54 feed_rabbit(pet)
55 pet .wag_tail()

Similar to the example from section 1.3 and like many subtle duck-typing
examples, the programmer has relied on domain-specific knowledge to guide
polymorphism such that the program is type correct at run time but in a
way that makes static analysis challenging. If our control flow graph ignores
exceptions raised inside calls, wag_tail appears to be required at lines 54
and 53 because line 54 postdominates both of them while pet is not killed.
But wag_tail is not required when pet is a chicken because the programmer
knows that trying to feed their pets a rabbit will, as a side effect, filter out
chickens from enduring the subsequent wag_tail operation.
If we ignore exceptions from calls in the intra-procedural control flow

graph, simply using exceptions to direct control flow is not enough to harm
the result. The exceptions must be used to coordinate polymorphism by
directing types along different paths. We argue it is reasonable to ignore
these rare uses of exceptions in our control flow graph and that is what
we do in our implementation (chapter 6). However, a conservative solution
could assume all calls can throw an exception and an optimisation could
investigate any call receivers that the flow analysis manages to resolve to
see if exceptions are possible. In all cases it is safe to ignore interpreter
exceptions that may occur non-deterministically because they cannot be
used to coordinate polymorphism.
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5.6 Approximating must-aliasing

In general, it is not possible to determine if two arbitrary expressions must-
alias [21] but, depending on the semantics of the language, it may be possible
to under-approximate it. Section 4.7.3 proves that limiting the relationship
to instances of the same variable makes it possible to under-approximate
must-aliasing if the analysis can prove that no execution step on any path
between the two instances modifies to what the name is bound. This is
still uncomputable, but the semantics of our toy language from section 4.10
allow us to under-approximate it statically for variables in the same method
if there are no assignments to the variable on any intra-procedural control
flow path between the two points.
The semantics of Python permit a similar analysis with certain caveats.

Like the toy language, variables are named references to values (objects) and
local variables cannot be modified outside their local scope.3 Therefore, two
occurrences of the same variable within a local scope without an intervening
assignment in that scope are guaranteed to alias each other regardless of the
code executed between them. Consider the following example:

1 def func(m):
2 m = B()
3

4 x = A()
5 x .p()
6 func(x)
7 x .q()

The value that receives the call to p, x5, and the value that receives the call
to q, x7, are guaranteed to be aliases regardless of what func and p actually
do. The intervening code might modify the value to which x refers, but it
cannot modify x to refer to something else. In this example, although func
reassigns its parameter, it only affects the reference, m, which is local to the
function’s scope. When it returns to the calling scope, x still refers to the
same value as before.
As with IntraNK from section 4.10, under-approximating must-aliasing

3Well, almost. There are ways to do it including aliasing and then modifying the locals ()
dictionary or using the exec statement, but the behaviour has changed between Python
versions and is now all but forbidden.
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between two variables in a procedure boils down to ensuring that there are
no intervening assignments in the local scope. A number of techniques exist
in the literature for this sort of analysis [3, 7].
We have to be a little careful. In Python, global variables complicate alias

analysis, since intervening code is free to retarget the reference, as shown
here:

1 def foo () :
2 global x
3 x = B()
4

5 def bar () :
6 global x
7 x = A()
8 x .p()
9 foo()

10 x .q()

A variable must truly be local to be considered for must-aliasing by the
intra-procedural kill analysis. Fortunately, unlike in some languages like
JavaScript, which variables are local and which are global is a static decision.
As proved in chapter 4, being unable to establish aliasing in all cases does

not affect the soundness of our results; underestimating aliasing only affects
the precision of our inferred set of required features and therefore the pre-
cision of contraindication. Indeed, any sound computable alias analysis will
necessarily compute an under-approximation [21]. More powerful analyses
may be able to determine aliasing for a greater range of expressions, but
this would require further investigation to see if in practice the cost of the
analysis is worth the increased precision.

5.7 Class as upper bound

After propagating the required features, each variable has a static approxi-
mation of its required features, the ‘added value’ that enables contraindica-
tion of a flow-based type. But to use the feature for contraindication there
must be some way to link it back to the classes being contraindicated.
For Python, this link is the class declaration, which lets the author define
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the methods that all instances will support when they are created.

class MyClass(MySuperclass ) :
def a_method( se l f ) :

print " I am a method of my class"
def another_method( se l f ) :

print "and another"

All instances of this example class are created with the two declared methods
as well as any non-conflicting methods they inherit from the superclass
hierarchy.
Flow-based type inference is sometimes called concrete type inference [2,

32] because it infers concrete types: sets of value creators, typically classes.
Success types, on the other hand, are interface types: descriptions of a
value’s supported operations. In statically typed languages, these are com-
patible views of a type because classes completely define the operations
supported by the values they produce and this cannot change at run time.
Most duck-typed languages, however, support the run-time modification
of classes. This does not affect our success types—required features are
required regardless of whether we can map them back to a declaration—
but using these features to contraindicate classes may cause us to do so
erroneously if we are expecting to find all supported features in the class
declaration.
Importantly, this problem does not reduce the contribution of our method

for many applications of type inference, as it is also a problem for the
existing flow-based type inference: Flow analyses may identify which class
constructed an object, but this does not necessarily mean that the object
has that class’s declared feature at a given point in the program. For an
application such as refactoring this may well cause the tool to break working
code.
Like most existing work [28,41] and practical tools, we assume this partic-

ular aspect of dynamic behaviour does not occur. While this is not true in
practice, it is a reasonable and necessary assumption to make when trying
to provide any sort of tool that requires the static analysis of a dynamically
typed program. Chapter 7 shows the effect that this assumption has on the
quality of our results.
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5.8 Closed world

In practice, no Python environment makes all program code available for
analysis. For instance, the canonical Python interpreter, CPython, sup-
ports compiled modules implemented in C, as well as built-in classes and
functions, none of which can be analysed. This has two main effects: First,
we may miss some class definitions, causing the type judgements to include
fewer types than can actually occur, thereby threatening completeness. Sec-
ond, we may fail to see uses of a value that occur when passing it into a
call to a compiled function, reducing the number of restrictive operations
the inference analysis can use to narrow down the type, thereby affecting
precision.
In our evaluation, we worked around the issue for built-in classes and

functions by mocking them up in Python. Unlike their real-world coun-
terparts, they are not functioning implementations, but simulate enough
of the definition and operation of the built-in classes and functions that
type definitions can be resolved from their interfaces, contributing to the
type-narrowing process.
Compiled modules, however, are provided by third parties, so mock imple-

mentations are not a general solution. We do not attempt to provide mock
versions of any compiled modules and this is reflected in the results given in
chapter 7. A practical development tool could provide mock versions of the
common third-party modules, such as GUI libraries, and potentially make
this extensible so that third parties can add their own mock versions of their
modules to the development environment.

5.9 Straying from the ideal

In this chapter we have discussed how the formal prerequisites from sec-
tion 4.12 can be adapted to the semantics of Python, a practical language.
Sometimes this means compromising on precision, but the compromise was
for the sake of soundness:

• not considering fields as features and

• ignoring methods called indirectly.
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Sometimes we are unable to find a compromise that maintains the soundness
of the analysis, and we make a case for why these further compromises are
justified in the context of actual program behaviour:

• reflection by calling a method and catching the resulting duck test
failure ( AttributeError ),

• adding methods to a class other than through a method declared in
the class definition,

• calling functions via method-call syntax,

• exceptions raised in a called procedure being used to coordinate poly-
morphism in their calling ancestors, and

• compiled modules hiding class declarations and data-flow paths.

Our results show that in practice actual behaviour either rarely uses the
problematic features or does so in a way that leaves the types unaffected
(chapter 7). While our formalism may demand the prerequisites of sec-
tion 4.12, we argue that as long as violations are only minor, the technique
can apply usefully to a range of less than ideal languages.
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6 Implementation

In this chapter we present the implementation of type inference with con-
traindication that we developed for Python and used to produce the results
in chapter 7.
We begin by describing our flow analysis implementation, which we base

on DDP by Spoon and Shivers [41, 42]. Then we explain how we calculate
domination and aliasing, the ways in which our implementation differs from
our formalism and conclude with an outline of how we collect type definitions
from the system to perform contraindication.

6.1 Design decisions

A major goal for our implementation is to use it to create a Python envi-
ronment for the popular Eclipse IDE1 and, although this has not yet been
achieved, this goal influenced our design decisions.
Firstly, the implementation is written in Java rather than Python; Eclipse

is written in Java and there is no easy way to combine the two languages.
Secondly, from the array of possible flow-based type inference techniques

(section 2.5), we chose the demand-driven approach of Spoon and Shiv-
ers [41, 42]. No sound flow analysis for Python existed2 and demand-
driven type inference, being expressly designed for IDEs, seemed the obvious
choice.

6.2 Flow analysis implementation

Spoon and Shivers developed their demand-driven technique, DDP, for the
duck-typed object-oriented language Smalltalk, which in many ways is sim-

1http://www.eclipse.org
2Non-sound implementations appear in IDE tools such as PyDev (http://pydev.org/)
and Rope (http://rope.sourceforge.net/).
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ilar to Python. Nevertheless, building a flow analysis for Python is a time-
consuming endeavour. Python is a large language and a sound flow analysis
of real-world programs requires a complete abstract interpreter for Python,
written from scratch.
The basis of the demand-driven analysis is that results are only calcu-

lated on request. A result is requested by posting a question, known as
the root goal, to the analysis engine, which responds with a conservative
approximation of the answer. But goals, including the root goal, may de-
pend on other goals, which are also posted to the engine, so the answer to
the root goal is only returned once all the sub-goals, upon which it transi-
tively depends, have been answered. Furthermore, the dependency between
goals can be circular, especially in a higher-order language like Smalltalk
or Python, where data flow and control flow depend on each other, so each
goal’s answer is only provisional until the system reaches a fixed point.
Each goal starts with a trivially over-optimistic result and, as the analysis

encounters evidence of this over-optimism, the goal’s answer is refined to
take that into account. When a goal’s answer changes, the analysis engine
places all the goals that depend on it onto a queue for re-processing so that
they may refine their answers in light of the new information. The goals
are carefully designed so that their answers only increase monotonically,
so the analysis is certain to terminate. Once this happens, the goals are
all “justified with respect to each other” [41] and the root goal’s answer is
known to be a conservative approximation of the true answer.
The algorithm of Spoon and Shivers [42] also supports goal pruning (the

P in DDP), where it assigns a trivially pessimistic result to a goal if the goal
meets particular criteria, for instance, taking too long to reach an answer.
The effect of pruning a goal is that any subgoals it posted are now ignored
and the analysis can continue as though that goal had a fully justified an-
swer. This allows the analysis to bypass particularly hard questions based
on prevailing run-time conditions without aborting the original request en-
tirely.
Our implementation, however, does not use pruning, as we need a con-

sistent level of precision between runs for the results in chapter 7 to be
meaningful. Pruning compromises precision dynamically, so apparent vari-
ations in precision might have been caused by factors outside our control.
Obviously, pruning is suited to interactive applications, so we are certain to
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add it when we integrate our implementation into an IDE.
Another difference is in the use of context. DDP is a context-sensitive

analysis using the Cartesian Product Algorithm [2]. We chose not to make
our analysis context sensitive both to keep the already complex flow imple-
mentation as simple as possible and to make the already slow analysis as
fast as possible. In the future we would like to incorporate optional context
sensitivity and compare the increased accuracy of contraindication with the
increase, if any, from context sensitivity (section 8.3.1).
A final difference is that our flow analysis implementation does not do a

temporary cast to resolve contradictions (section 3.2). Instead, it returns >
and the cast becomes the basis of contraindication (section 3.6).
Although we include execution times in chapter 7 (table 7.2), we do not

claim they are representative of the cost of a context-insensitive flow anal-
ysis. DDP is designed to favour performance for a single type query over
performance for an exhaustive analysis [41]. We used DDP despite this be-
cause we intend to include our work in an IDE (section 6.1) and developing
two separate flow analyses did not seem a sensible use of time.

6.3 Control flow graph

We approximate observed and required features on an intra-procedural con-
trol flow graph that we build from the abstract syntax of each function and
method body. As described in section 5.5, to produce the results presented
in chapter 7 our control flow graph ignores the possibility that calls might
raise an exception rather than returning to the call site. This permits us to
use an intra-procedural analysis without resorting to adding an exceptional
transition from every call site—the conservative assumption. Nevertheless,
our implementation is able to make the conservative assumption as well.
We calculate the intra-procedural control flow graph for each Python

procedure (function, method, class and module3) in a single pass without
first translating into three-address form. In the standard way [3] the graphs
consist of basic blocks of statements which execute only sequentially and
transition between blocks where execution may branch. Each control flow
graph has an additional, empty entry block and two empty exit blocks: one

3In Python, classes and modules are also procedures. Both execute the first time a
module is imported.
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representing conventional termination or return and the other representing
exceptions escaping the local scope.
Our implementation supports most Python syntax although generators

are treated as functions which may not be correct, and both with statements
and decorators are currently ignored. Recent language changes will require
further study, but we intend to support contemporary Python in the near
future.

6.4 Dominator analysis

We propagate the basic sets to other expressions to maximise the size of
our frozen duck types. As described in section 4.7, observed features of a
variable propagate to its dominating aliases and required features, to its
postdominating aliases.
We calculate an under-approximation of dominating and postdominat-

ing aliases from the intra-procedural control flow graph using a standard
domination algorithm to approximate true domination combined with SSA
(section 6.5) to approximate must-aliasing. Chapter 4 describes at length
why this combination of approximations leads to a sound approximation of
observed and required features.
We adapted code from Android’s Dalvik4 bytecode compiler for our dom-

inator analysis implementation.

6.5 SSA

We use static single assignment (SSA) [7] to perform alias analysis via kill
analysis in our implementation, where our toy language used IntraNK. The
choice was pragmatic; using SSA meant we could get a working imple-
mentation quickly. SSA is known to scale well, implemented in terms of
dominators—an analysis we already have—and the implementation is text-
book. We are certain that better analyses are possible; SSA is in no way
fundamental to the approach.
SSA renames variables such that each variable has a unique definition.

Therefore, any appearances of a local variable within a procedure sharing
the same ‘SSA name’ are guaranteed to alias each other.

4http://code.google.com/p/dalvik/
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As with much of the discussion of aliasing since section 4.7.3, the alias-
ing that SSA establishes is much stronger that the ideal, postdominating
aliasing. Firstly, it is must-aliasing, which means, for example, that it will
not give us the postdominating aliases inside a loop body if the alias is
redefined in that loop (section 3.9). Secondly, the aliasing is only between
variables of the same name, so unambiguous, unique assignments to differ-
ent variables are not included. This reduces the precision of our method
while keeping it sound. Nevertheless we believe this can be improved in the
future (section 8.3.2).

6.6 Selectively inter-procedural propagation

The way we propagate features differs from that presented in Chapter 4 in
one significant way: where the formalism is shown to be sound either for an
inter-procedural or an intra-procedural control flow graph, we use a hybrid
of the two, which we have not yet been able to formalise. We developed our
intra-procedural formalism to avoid depending on a precise inter-procedural
analysis. However, eventually we will use inter-procedural flow analysis to
infer types which we then refine using our observed and required features
through contraindication (sections 4.11 and 6.2). Although a tractable im-
plementation of this analysis is not precise, it would be perverse not to
take advantage of it when it is. Therefore, when the flow analysis is precise
enough to infer a single receiver for a given call site, we can continue the
analysis in the procedure body, mapping the arguments at the call site to
parameters in the procedure. Required features that propagate up to the
parameters can also propagate out of the call site back to the arguments
and beyond. If, on the other hand, flow analysis is not able to uniquely
resolve the receiver, we simply ignore it.
We argue that this does not affect the soundness of the approximation,

as it is equivalent to inlining the procedure body and remains within the
definitions of dominating and postdominating alias. Those definitions (def-
initions 13 and 14) require aliasing to occur between the (post)dominator
and the (post)dominatee along any path that includes both points. They
do not insist that the (post)dominator must only alias that program point,
something that would prevent us looking into procedure bodies that might
also be called from elsewhere with other arguments. Formalising this hy-
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brid approximation and proving that it remains an under-approximation of
postdominating aliasing is an open problem (section 8.3.2).

6.7 Contraindication

Our flow analysis, like most other flow-based type inference, infers types
as a set of named classes. The observed features tell us which features the
value definitely has and required features tell us which features the program
cannot possibly survive without. If any of the classes in a variable’s flow
type lack one or more of the features, we know that, in any well-formed
program, the variable cannot be an instance of that class, so we refine the
type by removing it. This is the essence of contraindication.
When requested for a variable’s contraindicated type, our implementation

performs flow analysis to obtain the set of named classes. It processes each
one by collecting all declared method names, resolving its superclass, and
recursively collecting all method names defined in the inheritance hierarchy.
Resolving the superclass may require further flow analysis because they
are dynamic expressions in Python. We have never seen this in practice,
however.
At this point the class and the success type have both been reduced to a

set of method names at which point contraindication becomes a simple set
operation; if the class signature is not a superset of the success type, it is
contraindicated from the flow type.

Top A flow type that deserves special mention is >, the most pessimistic
type. Flow analysis, especially in a dynamically typed language, frequently
encounters situations where it cannot reconcile conflicting information caused
by imprecision and has no choice but to return > as the type (section 2.5.6).
In theory, > is an infinite set which we cannot process a member at a time
as we would normally. However, as an implementation detail of the flow
analysis, we know all the Python modules that the program loaded directly
or indirectly. Even if the flow analysis has lost track of which class flowed
to a variable inferred as >, we know it must come from a loaded module;
classes cannot be instantiated without loading their parent module.
We harvest every class declaration in every loaded module once at the

start of the analysis and use this to contraindicate > types. In fact, our
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results show that the majority of the types our analysis improved had previ-
ously been > (chapter 7). This goes some way towards showing how severe
a problem > results are in flow analysis of dynamically typed languages.
Even if we had not had the list of loaded modules available to us, the

analysis has all the source code available, so could have harvested all class
declarations, albeit with a corresponding performance and precision penalty.

6.8 Computational cost

The flow-based concrete type inference (section 6.2) is an inter-procedural
analysis and, as such, has at least cubic complexity in the size of the pro-
gram [24]. The interface recovery analysis (sections 6.3 to 6.5) is calculated
on an intra-procedural control-flow graph. The cost of constructing the
graph is limited by the branching possible at non-call nodes, making it lin-
ear in the size of the program. Therefore, the cost of contraindication is
dominated by the cost of the flow analysis.
However, it does not follow that contraindication adds negligible cost to an

existing concrete type analysis, at least not the way we have implemented
it. The reason for this is that the flow analysis implementation that we
are using is demand-driven (sections 2.5.5 and 6.2) and we implemented
our interface recovery analysis as a hybrid intra/inter-procedural analysis
that, although largely intra-procedural, sometimes follows procedure calls
if the inter-procedural flow analysis is able to resolve the callee uniquely
(section 6.6). Because the flow analysis is demand-driven, attempting to
resolve the callee may initiate extra flow analysis beyond that which was
needed to infer the concrete type being contraindicated.
A compromise solution, which we might explore in the future, is to limit

the interface analysis so that it only follows calls if the callee has already
been resolved uniquely by the flow analysis, but does not initiate any new
work.
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7 Evaluation

We evaluate contraindication by measuring the effect it has on the results
of a context-insensitive flow analysis in a range of real-world programs. The
implementation we used for the flow analysis, the frozen duck type analysis
and the final contraindication step are described in the previous chapter.
Our evaluation aims to answer the following questions:

1. Does flow-analysis with contraindication produce types that are more
precise than flow analysis alone?

2. How large is the increase in precision?

3. Is there a benefit to using required features for contraindication over
observed features?

7.1 Choosing the corpus

We chose eight programs to study, all drawn from open source Python
projects.

ACE: a cosmogenic nuclide calculator;1

BitTorrent: a peer-to-peer file-sharing service;2

buzhug: a non-SQL database engine;3

Gadfly: a SQL database engine;4

Lyntin: a text-based multi-player game client;5

1http://ace.hwr.arizona.edu/
2Originally obtained as open source from http://www.bittorrent.com/. This project
has recently been rendered proprietary.

3http://buzhug.sourceforge.net/
4http://gadfly.sourceforge.net/
5http://lyntin.sourceforge.net/
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ReportLab Toolkit: a PDF document generator; 6

Roundup: an issue-tracking system;7 and

PySpaceWar: an interactive, single-player game.8

This diverse population varies in both size and application domain. We
found the projects through SourceForge,9 the PythonWiki10 and the Python
Package Index.11 We selected them based on several criteria:

Size: We selected the programs to cover a range of sizes (table 7.2) in case
program size affected contraindication. However, we only considered
projects with fewer than 100,000 lines of code to allow the flow analysis
to complete in a reasonable time. Nevertheless, even with this limit,
we were unable to analyse every expression in a reasonable amount of
time, so we restricted the analysis to consider only call receiver types
(section 7.1.1).

Working order: Our analyses require that all code be present, so we needed
to be reasonably sure the programs were in working order. By this we
mean that all dependencies, both on third-party libraries and inter-
nally, were satisfied. This is different from requiring the program to
be well formed, something we assume by virtue of these being publicly
available open-source programs.

We excluded any program whose internal dependencies could not be
satisfied without an installation phase, as well as any programs whose
third-party dependencies were not easy to install.

Pure Python: We excluded any program that included compiled modules,
as this means the analysis does not have all the source code available
for study. This restriction only extended to compiled modules included
with the program since, in practice, many projects depend on third-
party modules (including those in the system library) that themselves
depend on compiled components.

6http://www.reportlab.com/software/opensource/rl-toolkit/
7http://roundup.sourceforge.net/
8http://mg.pov.lt/pyspacewar/
9http://sourceforge.net/

10http://wiki.python.org/moin/MostPopularPythonProjects
11http://pypi.python.org/
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Table 7.1: Effect of contraindication on the precision of types inferred through flow
analysis.

Program Flow> Observed Required Combination

Im Im> ∆¬> Im Im> ∆¬> Im Im> ∆¬>

ACE 45.3% 8.0% 77.0% 3.3% 44.9% 91.2% 7.9% 51.3% 88.2% 11.0%
BitTorrent 49.1% 8.8% 83.4% 2.8% 54.2% 90.6% 9.8% 54.6% 90.0% 10.5%
buzhug 42.8% 3.6% 88.9% 0.7% 44.5% 95.9% 2.9% 44.9% 95.1% 3.6%
Gadfly 50.5% 15.6% 65.1% 11.5% 59.0% 85.6% 17.9% 59.1% 85.4% 18.1%
Lyntin 44.6% 6.0% 92.0% 0.7% 47.8% 93.3% 4.8% 47.8% 93.3% 4.8%
PySpaceWar 44.2% 5.9% 93.0% 0.7% 45.7% 96.7% 2.7% 45.8% 96.4% 3.0%
ReportLab 44.6% 12.7% 92.0% 2.1% 53.9% 95.7% 4.7% 54.0% 95.6% 4.8%
Roundup 48.9% 19.1% 55.2% 19.3% 64.8% 75.5% 35.7% 65.0% 75.2% 36.2%

47.1% 10.0% 80.8% 5.1% 52.4% 90.6% 10.8% 52.8% 89.9% 11.5%

7.1.1 Inference targets

We could not infer a type for every expression in the corpus exhaustively; the
flow analysis just does not scale. So we picked a particular kind of expression
for which we infer types: method call receivers, i.e., the expression on the
left hand of the full stop in a called attribute. For example, receiver in this
case:

receiver .method()

Method call receivers are particularly interesting for program analysis but
notoriously hard to establish.
Limiting the expressions this way brought the number of types inferred

to between 497 and 9448 per project, which we could infer in a reasonable
amount of time (see table 7.2).

7.2 Result of contraindication

Table 7.1 summarises the results of our analyses for each of the eight case
studies. Flow> is the percentage of call sites that pure flow analysis inferred
as >, meaning it was unable in those cases to provide any sort of precise
type. We explain why this arises and why it is so common in section 2.5.6.
The next three sets of columns show to what degree our contraindication
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using frozen duck types is able to improve upon pure flow analysis. The three
sets show the relative effect of contraindication when the frozen duck types
are made using only observed features (Observed), using only required
features (Required) and using the union of both (Combination). Each
set is divided into three columns.
Column Im gives the percentage of all types inferred by flow analysis that

contraindication was able to refine. This does not take into account the
magnitude of the improvement, just its frequency.
Column Im> gives the percentage of those refined types that had been

originally inferred as > by flow analysis. In other words, this column indi-
cates to what extent the least useful result from flow analysis is improved.
These correspond to an improvement of infinite magnitude.
Finally, the column labelled ∆¬> gives the average magnitude of the

improvement in the size of the types inferred by flow analysis when that
improvement is not infinite. The magnitude of the improvement is the
percentage decrease in the number of abstract values in the non-> concrete
type. In other words, this column indicates by how much, on average,
contraindication is able to further refine those types for which flow analysis
was able to provide some amount of precision.
Looking at the last row of table 7.1, which provides the results averaged

across the eight case studies, we can see that all three applications of con-
traindication are significantly better able to provide types that are more
precise than flow analysis alone.
Contraindication based on required features alone led to an average of

52.4% of the types inferred by flow analysis being made more precise. The
vast majority of those improved, 90.6%, had been inferred as > by flow
analysis. The remaining types (i.e., the non-> types) were reduced in size
by an average of 10.8%.
In contrast, when contraindication is based on observed features, only

10.0% of the flow analysis types improved. As with required features, the
vast majority of these, 80.8%, had previously been inferred as >. Of the
remainder, the size of the inferred type was only reduced by 5.1%.
When we based contraindication on the combination of the observed and

required features—the full frozen duck type—the results were only slightly
better than using required features alone: on average 52.8% of the flow
analysis types improved and, of those that had not previously been >, they
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Table 7.2: Relative run times of contraindication using only observed fea-
tures, only required features and both kinds of features together.
All tests were carried out on an Intel Core 2 Duo 3GHz system
with 4GB RAM and a 3GB Java heap size limit.

Program LOC Call sites Run time (seconds)

Observed Required Combination

ACE 18039 5509 3219 2558 2500
BitTorrent 69969 8888 4416 4754 4478
buzhug 1970 497 298 288 279
Gadfly 14704 2078 301 310 273
Lyntin 12306 2486 433 405 416
PySpaceWar 4392 731 253 267 258
ReportLab 49728 6091 800 854 808
Roundup 39369 9448 929 888 1080

improved by 11.5%.

7.3 Analysis

The improvement made by the combined analysis is not the sum of that
made using the observed and required features separately, and we did not
expect it to be. The two sets of features can have members in common and
these members can only contribute to contraindication once in the combined
analysis.
We also expected the result using only required features to show a better

improvement than that using only observed features. Our target expressions
are all method receivers, so every target was bound to have at least one
required feature: the method being called directly on the expression being
typed. This method is not an observed feature of the expression because
the call happens after reaching the expression.
The difference between the flavours of contraindication is significant:

10.0% for observed features compared to 52.4% for required features. This
suggests that much of the improvement comes from the single method di-
rectly on the expression. Non-variable expressions do not have observed fea-
tures because our analysis cannot establish the aliasing requirement needed
to create the basic set (section 4.7.2). We suspect that if we were to re-
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peat the analysis with the targets limited to variables, the analyses would
produce more similar results.
We were not expecting the combined analysis to vary so slightly from the

result using only the required features. One explanation might be that when
two or more methods are called on the same variable—the only situation
that leads to observed features in this study—the same method tends to be
called each time. Whether this is actually the case is itself an interesting
question (section 7.4).
Every program studied showed a significant improvement in the preci-

sion of inferred types. Most of this improvement came from refinements of
types on which flow analysis had failed entirely. The large percentage of
refined > types, combined with the small percentage by which contraindi-
cation reduces the non-> types, seems to imply that when flow analysis
infers a non-> type it does so fairly precisely. However, the true benefit of
contraindication for non-> types may be obscured by the sheer number of
them inferred by flow analysis. We suspect that if the flow analysis were
improved by, say, context sensitivity, then the benefits of contraindication
for refining non-> types would become more apparent.
The results we obtained and describe here are from an implementation of

type inference applied in a single pass. We suspect that we can obtain an
even better result by interleaving passes of flow analysis and contraindica-
tion, iterating until reaching a fixed point, with each pass providing more
precise types to improve the next. This is an important idea to explore in
future work (section 8.3.3).

7.4 Threats to validity

The evaluation we present here is vulnerable to a number of threats to its
validity. The first has to do with the choice of case-study subjects. We
made an effort to find a broad set of programs, but that set is indeed small
and may be skewed by the fact that they are (or were) developed as open
source projects. We cannot, therefore, assert that our results extend beyond
the set of chosen subjects, but the universally positive results from them
increases our confidence in the method.
A second threat arises from the fact that we were unable to use our

implementation of flow analysis to infer types for every expression in a
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Table 7.3: Verification of the results by manual inspection of a sample from the
Combination analysis.

Sample Compiled RT method RT code
Program size Error module addition Eval generation

BitTorrent 57 8.8% 40.0% 60.0% 0.0% 0.0%
PySpaceWar 30 16.7% 80.0% 20.0% 0.0% 0.0%
buzhug 22 4.5% 100.0% 0.0% 0.0% 0.0%
ACE 72 12.5% 0.0% 66.7% 22.2% 11.1%

10.6%

reasonable amount of computational time. We therefore limited the scope of
our evaluation, focusing on method call receivers. The threat, then, is that
the results of the evaluation are not representative of arbitrary expressions.
In particular, contraindication on method call receivers will always have at
least one required feature to take into account: the method called on the
expression being typed. The same is not true of observed features, which
can only consider method calls on strictly dominating aliases. While it is
clear that using required features produces many more refined types for
method call receivers than using observed features alone, we cannot yet say
how large the improvement would be for arbitrary expressions.
A final threat to validity is that our method or its implementation may

be flawed. To counter this threat we verified our results by manually in-
specting a random sampling of the call sites from the version of the analysis
using both observed and required features—the version most likely to over-
contraindicate the type. We report the results of this exercise in table 7.3.
For each case study subject we give the number of samples and the per-
centage of those samples found to be in error. An error is defined to be
a case where the inferred type was too narrow and, therefore, incomplete.
We identified four sources of errors in our results: (1) a class definition hid-
den within a compiled module; (2) a method being added to a class other
than by declaration; (3) the use of a Python eval (), which hides where a
constructor is called; and (4) a run-time declaration of a class. The first,
second, and fourth of these are associated with the restrictions discussed in
section 5.9. The third is a weakness of flow analysis.
Looking at the results, we can see that the main cause of errors varied
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by program, but that the majority were caused by compiled (GUI related)
modules obscuring class definitions, which renders contraindication blind
to their contribution to the analysis. Those problems can be resolved by
increasing the set of mock interfaces, as discussed in section 5.8. The other
major cause of errors can be attributed to methods being added to classes
at run time. In fact, all the errors of this type for ACE were caused by
a single method added to a class via attribute assignment rather than via
method declaration. In this particular case it would be easy to work around
the problem, since the assignment occurs in the class definition and simply
aliases a declared method. However, in general the problem remains due to
our assumed restriction.
On average, 10.6% of the results produced by contraindication were in

error, so the Im results for the Combination in table 7.1 may potentially
be that much lower. But even taking this into account, the improvement in
precision from contraindication is still quite significant.

7.5 Application: code completion

Several areas of programmer assistance that typically use conventional flow-
based type inference would gain from applying our approach. We discuss
the benefits of one such application here. Other applications are briefly
described in section 8.4.
Programming environments assist the user in their task by suggesting pos-

sible completions at appropriate moments. These completions are snippets
of code which the user chooses from the list of suggestions. The assistance
is two-fold; firstly, the most likely choice should be easier to select than to
type manually; secondly, the suggestions may reveal possibilities the user
was not aware were available. Our approach can improve the quality of this
type of assistance.
The typical scenario we have in mind is where the user types code such

as:

receiver .

Upon typing ‘.’, the system presents the user with a list of suggested names
with which they could complete the statement.
Assuming we want the list to include only correct suggestions—the cur-
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rent state of type inference in dynamically-typed languages is such that
environments have often resorted to unsound heuristics—the programming
environment must infer the type of receiver to calculate completions that
are valid for all values that may appear there. The difficulty is that impre-
cise inference may obscure valid suggestions. For instance, in the example
in section 1.3 on page 11 let us suppose the user has inserted a new line
between lines 16 and 17 started typing:

d = p.

At this point, the environment should be able to suggest foo() and bar()
as completions, but an analysis based purely on flow-based type inference
would not be aware of this due to the appearance of A and B in the inferred
type of p.
Our analysis improves the results by using recovered interface information

to refine the type and reveal the previously obscured completions. In this
case it uses the later calls to foo and bar, on lines 17 and 18, to refine the
type to just {C}, which would allow an environment to use the methods of
class C as the basis of its list of completions: foo() and bar().
Of course, to get any benefit from our approach for code completion, the

code must already make use of distinguishing features of the values for which
completions are needed. At first glance it may seem that the only additional
completions that can be suggested are for features that the programmer has
already used.
Even if this were the case, revealing these suggestions is still a significant

improvement. The features that have already been used may not have been
used recently or may be used far away from the location being edited, and,
as code is not written top-to-bottom in practice, features used after the
point being edited also result in improved suggestions, as in our example.
Code making up a program is also usually not written by the same per-
son. Revealing features used elsewhere by another author is very useful,
especially when this usage is hidden inside standard library code.
However, it is not the case that suggestions are limited to features already

used. Use of one feature reveals other features that are coupled to it. For
example, using a feature push may reveal a feature pop because use of one
feature is likely to limit the type to classes with the closely-coupled method.
If the feature used is unique to a class, it allows the environment to use the
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Table 7.4: Comparison of code completion using different inference methods.
The data show the percentage of completions that would have
been successful using each method.

Program Flow Interface Contra

ACE 16.0% 61.4% 86.2%
BitTorrent 28.6% 47.7% 77.9%
buzhug 30.0% 52.8% 79.5%
Gadfly 25.3% 38.8% 68.0%
Lyntin 23.9% 42.8% 66.6%
PySpaceWar 34.5% 48.3% 79.3%
ReportLab 74.0% 63.0% 92.1%
Roundup 24.3% 51.6% 71.2%

entire interface of the class to suggest completions.
A limitation of our approach when applied to code completion is that it

assumes a well-formed program. If a user is in the process of creating the
code, they may attempt to use a feature of a value that does not exist. This
would mislead our analysis and cause it to narrow the type too much and
present suggestions that are not valid. A solution to this problem might
be to base feature recovery only on the features in use at some sort of
checkpoint such as the last time the code was saved or the last successful
run of the unit tests.

7.5.1 Experimental analysis

To get an idea of contraindication’s practical impact on code completion, we
compare code completion based on three different sources of information:
flow analysis alone, recovered interfaces alone and the contraindicated types.
For every method call site in our test corpus, we simulate code completion as
though the user had not yet typed the name of the method. Completion is
considered successful if the suggestions that would have been made includes
the method that was actually chosen.
The results of our analysis are in table 7.4. The data are the proportion of

completions that would have been successful. In column Flow, suggestions
were based on flow analysis alone. In column Interface, they were based
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on the interface recovered using the Combination analysis (see section 7.2),
without reference to flow information. In column Contra, they are based
on the flow types contraindicated using the recovered interface.
The results show a clear benefit to using recovered interfaces to con-

traindicate types for code completion. It is also interesting to note that,
in all programs except ReportLab, code completion based on the recovered
interface alone includes the chosen method more often than when based on
the results of flow analysis.

7.5.2 Costs associated with code completion

Although the cost of our analysis is no different for this application than
for others, the nature of code completion is that it occurs frequently, and
each time a suggestion is chosen by the user the code is mutated. Ideally,
we do not want to perform the entire analysis from scratch every time this
happens.
Code mutation can invalidate the results of a previous run of our analysis

in two ways. Mutation can introduce new data-flow paths that let additional
classes of value reach a variable. In this case, the concrete type produced
by the earlier flow analyses would no longer conservatively overestimate the
possibilities in the modified program. Mutation can also remove features
from a class, the result being that, although the previously inferred types
remains an over-estimate, suggestions made on the basis of previous analysis
of the class’s interface may be invalid as the interface has changed.
The second problem is easily resolved by re-running just the analysis that

maintains the database of class interfaces—a cheap analysis—on the classes
whose features were removed. Any future suggestions will then be valid.
new flow analysis is not necessary because data-flow has not changed. The
results of the previous interface recovery analysis are still valid because the
uses of features remains unchanged. The contraindication step, also, does
not need to be re-run because it filters classes out of the concrete type based
on features that are used but not present in the declaration. Removing a
feature after the analysis runs means it may miss an opportunity to refine
the concrete type, but the type will still be a conservative approximation.
Nevertheless, as contraindication is a simple set operation and, therefore,
fast, it makes sense to rerun it using the updated results of the class interface
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analysis.
A limited solution to the first problem may lie in the nature of code com-

pletion suggestions, which typically insert code that uses a feature without
affecting local data-flow.

71 def func () :
72 x = something()
73 x .g()
74 x .h() # inserted by code completion
75 i f something() :
76 x . i ()

In this example, the insertion of x.h() by code completion cannot change the
concrete type inferred for x anywhere in the function. x is a local variable, so
any new data-flow resulting from calling method h cannot assign additional
classes of value to it. Even if calling x.h() modifies global state, causing
subsequent calls to something() to return additional classes of value, the
previous flow analysis that producing the return type for something() must
already have included those classes in the concrete type of x.
This means that the results of the flow analysis are still valid. The results

of the interface recovery analyses are also still valid because the recovered
interface of x will still have all the recovered features, though it may not be
as precise as it could be, because it does not include the new feature use, h().
As both these analyses are still valid, the previous results of contraindication
are still valid as well. In general, however, changes to data-flow will require
all analyses to be re-run if invalid suggestions are to be avoided.
Code can be mutated in other ways that do not invalidate the results. For

example, adding a feature to a class means that previous contraindication
may have refined a concrete type to exclude the class because it previously
lack the feature. This does not invalidate those previous results unless
data-flow is also modified to flow values of the new class to the point where
the type was refined. If the class was previously correctly excluded at a
point, adding a feature to the class will not make that judgement incorrect.
This hints at the interesting possibility that the analysis could be made to
produce more precise types if allowed to ‘watch’ the user programming than
it could by analysing the code from a cold start.
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8 Conclusion

For applications where type correctness is known or can reasonably be as-
sumed, contraindication works well to infer useful static types. The types
are useful in the sense that they can substantially improve the quality of
certain programmer aids, such as refactoring or code completion for pro-
grams written in dynamically typed languages. We have taken a critical
step toward demonstrating this by developing the theoretical underpinnings
of contraindication, showing how the method can be realised in Python and
evaluating how well it improves upon existing techniques.

8.1 Open problems

There are a number of problems we do not yet know how to solve. Among
them are the issues arising from the difference between the ideal language se-
mantics we assumed when we formalised our approach (section 4.12) and the
actual semantics of practical duck typed languages such as Python (chap-
ter 5). We summarise the compromises in section 5.9.
In particular, languages where exceptions can be thrown at any time

pose a problem for our approximation of required features that relies on
postdomination. And even if such non-deterministic exceptions are ignored,
it seems it would require an inter-procedural analysis to remain sound in
the face of exceptions used to coordinate polymorphism. In section 5.5 we
argue why it is reasonable to ignore all such exceptions and, indeed, we
did not find any errors caused by doing so when we sampled our results
(section 7.4). Nevertheless, it remains a problem with the approach.

8.2 New avenues

Required features are defined in terms of TROUBLE, the behaviour that a
well-formed program is guaranteed to avoid. In much of this thesis we have
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taken TROUBLE to mean a run-time type error and, therefore, that well-
formed programs are type-correct programs. But nothing about TROUBLE
means that it has to correspond to an error state. In section 5.2 we saw
that it does not even have to be a halting state. All that is necessary is that
it must be reasonable to promise that the behaviour never happens and the
syntax makes it possible to predict when it might occur.
Take squeaking as a ridiculous example: imagine that the language in-

cludes a syntactic form that guarantees a program will squeak if certain
run-time conditions hold at that point. Letting TROUBLE be all squeak-
ing configurations and well formed be a promise that the program never
squeaks, we can guarantee that the run-time conditions leading to squeak-
ing never hold. This is a more general form of the ideas behind required
features, where the syntactic form are attribute requests on a variable and
the run-time conditions are that the attribute is missing from the derefer-
enced variable.
This obviously requires more thought. Squeaking is not a particularly

practical example, but it illustrates a point that there may be applications,
perhaps in relation to testing, where one knows more about the program
than is evident from the source code, and being certain of the absense of
some behaviour can allow you to direct program analysis more precisely.

8.3 Future research

8.3.1 Improved metrics

Verification We verified our results by sampling them and manually in-
specting the source code to ensure that only those types included in the
result could flow to the expression (section 7.4). Being dynamically typed
makes this labour intensive because values, including classes, can flow un-
restricted through programs, requiring a complete understanding of the
source. The result is that we were only able to sample 1% of our results for
half our programs.
Run-time inspection might offer another way to verify the inferred types.

This kind of analysis monitors a running program and records the exact
types of object seen at an expression. Such analyses even form the basis
of type inference engines in their own right (section 2.2). However, these
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analyses are only as good as the test suite or user-interaction excercising the
program and, therefore, should be used in addition to manual inspection.
Nevertheless, they would add to the level of confidence in the results.

Context sensitivity Once we add context sensitivity to our flow analysis
implementation, it would be interesting to compare the relative benefits of
context sensitivity and contraindication, both in terms of pure precision as
well as the performance/precision trade off. And, assuming we find context
sensitivity is not hopelessly slow, it would be interesting to see if contraindi-
cation still has an appreciable increase in precision when applied on top of
a context-sensitive analysis. We suspect it will because even a context-
sensitive analysis will not be able to recover types for items in heterogenous
containers (section 2.5.6).

8.3.2 Extending the formalism

We implemented contraindication such that, if flow analysis is able to resolve
a function call to a single receiving function, the arguments passed to the
call inherit the required features of the parameters to which they are passed
(section 6.6). We have argued that this is correct as it is equivalent to
inlining the call. However we have not yet shown this to be the case in our
formalism (chapter 6).
Extending this, when flow analysis infers multiple receivers for a call, we

would like to let arguments inherit the intersection of the required features
of the parameter to which they are passed. Again, we believe this to be
correct, but have yet to prove it formally.
Finally, in the most general case, we would like to improve our approach so

that we reason about which features, rather than program points, dominate
or postdominate an expression. This would improve the precision of the
analysis by capturing, for instance, the example at the end of section 3.7,
where a feature appears on both branches of the conditional but is ignored
by our current analyses because the program points it appears at do not,
individually, dominate.
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8.3.3 Iteration

The implementation we describe in chapter 6 and use to produce the re-
sults in chapter 7 performs flow analysis to render a type for an expression
followed by frozen duck type analysis and, finally, uses the latter to refine
the former through contraindication. This already results in a significant
improvement in precision.
However, we believe the true potential of the approach lies in feeding

the results of the contraindication back into the flow analysis and iterating
the analyses until the type reaches a fixed point. This will require careful
thought to ensure the flow analysis terminates.

8.3.4 Richer features

Currently, our frozen duck types only consist of method names from the
observed calls. In the future we could add information about the number
of arguments or the keywords used. We have not done so yet because the
semantics of parameter passing in Python are not straightforward. We
already discussed the difficulty of including named fields. We could include
features such as callability and iterability based on observations of those
operations as well. In general, an analysis can use any property whose
absence will cause some failure as a feature.

8.4 Practical applications

We explain in section 6.1 that our aim is to incorporate our implementa-
tions of flow analysis based on DDP [41,42], frozen duck type analysis and
contraindication into the Eclipse IDE. IDEs are essentially the amalgama-
tion of many separate tools, many of which could benefit from our analyses
including:

API documentation: Even in the absence of flow analysis, frozen duck type
analysis can be performed inter-procedurally to produce an under-
approximation of the set of features that either will be or must be
satisfied at an expression. This is useful when documenting parame-
ter and return types at an API. When performed on a parameter, the
analysis equates to required feature analysis (section 3.8) and docu-
ments features that the caller must ensure the argument they pass
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provide. When performed on a return value, the analysis is observed
feature analysis (section 3.7) and documents features the return value
is guaranteed to support.

This is particularly useful in a duck typed language as type compat-
ibility is decided on the basis of features rather than named types.
Nevertheless, frozen duck types are similar to success types [23] and
under-approximate the set of supported features, so do not guaran-
tee that an argument will be compatible even if all the features are
present, nor that the returned value will be incompatible with some
operation requiring more features than the frozen duck type promises.

Code completion: Firstly, frozen duck type analysis can, again, operate in
the absence of flow analysis to provide code completion suggestion to
the user as they program. In Python this would happen when the user
types a full stop after a variable name:

var .

At this point the tool assists the user with a list of features supported
by the variable. The list might appear immediately as a drop down
list or on demand as a key stroke that cycles the possibilities.

Of course, this is best done by a combination of frozen duck types
and flow analysis through contraindication. That way the assistance
benefits from the extra methods found through the class definition
without losing the ability to assist when flow analysis inferred>, which
it does almost half the time (section 2.5.6).

Refactoring engine: Arguably the most pressing need for better flow analy-
sis in dynamically type languages comes from refactoring, the process
of making behaviour-preserving changes to the code wholly or par-
tially in the absence of direction from the user. Such tools depend on
an analysis that is both sound and precise:

• Sound, because the refactoring engines guarantee that their code
transformations do not alter program behaviour. Unsound anal-
yses mislead the refactoring engine, such that this guarantee is
falsely made.
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• Precise, because the refactoring engine uses the flow analysis as
an impact analysis. Its purpose is to determine the smallest set
of changes that will effect the desired transformation without
changing behaviour. This is important because not only does
the precision determine the scale of the changes, it often deter-
mines whether it is possible at all because much of the code in
any system—the libraries for instance–may not be changed. If
that were not enough, an imprecise analysis forces the refactor-
ing engine to reason about non-sensical changes that arise as a
result of the contradictions caused by imprecision (sections 1.4
and 3.1). These are precisely the kinds of contradictions we de-
veloped contraindication to mitigate.

Type checker: Although explicitly not one of our aims, parts of the analyses
do lend themselves to type checking. While no analysis can result in a
type safety analysis for a dynamically typed language that guarantees
the absence of run-time type errors, flow-based type inference can
be used to find definite errors in such languages when, for instance,
none of the classes in the inferred type supports the operations being
performed.

We have already likened required features to success typings, which
were developed to find “type clashes” [23] in Erlang programs. Al-
though we use required features for a different purpose, they underap-
proximate the set of feature requests to which a program will subject
a value, so can be used to detect when a value will be incompatible
with those requests.

Both these uses are subject to an assumption that classes and values
have fixed sets of supported features. When that assumption does not
hold, either analysis may produce false positives. A further analysis,
perhaps similar to Anderson et al. [6] may mitigate this.

Lint: Unlike type checkers, bug finders may produce false positives because
their output takes the form of warnings and advice to the user, rather
than definite errors. The lint family of analysis tools fits into this
category, for example Pylint1 for Python.

1http://bitbucket.org/logilab/pylint
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Our flow analysis implementation would be a good basis for such tools.
The analysis can be overly strict and behave like a static type safety
analysis by flagging a potential run-time type error if any member of
the set of classes in the inferred type fails to support the operations
being performed.

In the absence of certain pathologically dynamic language features, such
as eval and run-time code generation, which it cannot reason about, our
implementataion of flow analysis, based on DDP by Shivers and Spoon,
produces sound types unlike other IDE tools we have come across for Python
(e.g., PyDev2 and Rope3). This will make its assistance more reliable and
we hope it will engender greater programmer confidence, as the assistance
will no longer mislead. This is particularly critical for refactoring because
incorrectly inferred type information causes refactoring to break the code
as it changes it.
On the other hand, our current implementation is likely to be slower and

less precise than the unsound inference engines. The challenge will be to
achieve a level of precision that users are willing to accept in return for
correct results. We believe our contraindication approach is the key here
(sections 3.6 and 6.7).
Although contraindication is not sound for Python, as the language se-

mantics do not match the prerequisites (section 4.12 and chapter 5), the
problem is limited to certain uncommon behaviours (section 5.9). Never-
theless, we are likely to integrate contraindication as an optional feature,
enabled by default for descriptive applications like API documentation while
disabled by default for generative applications like refactoring.

8.4.1 Remaining work

Much of the work towards a useful Python development tool is already
complete, but before we can produce a practical environment some more
will have to be done.

Compiled module simulation Our results in table 7.3 show compiled
modules are a significant source of errors in applying our analysis to Python.

2http://pydev.org/
3http://rope.sourceforge.net/
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Compiled modules and built-in code violate one of the main assumptions
both flow analysis and contraindication rely upon: that all source code is
available for scrutiny. The solution is to simulate their behaviour using
mocked implementations, special-case treatment in the analysis engines or
annotation.
We simulated the built-in language functions using a combination of the

first two. In any practical tool, we would need to simulate the compiled
libraries as well and this may best be done through mocking and annota-
tion because that permits third-party library developers to create their own
descriptions of their library’s behaviour that our tool can consume.

Context sensitivity Our implementation of flow analysis differs from
DDP [42] by omitting context sensitivity from the analysis (section 6.2).
We did so to produce a simple, fast implementation. However, the context-
insensitive analysis infers > almost half the time. Although contraindication
improves this, we would like to reintroduce context sensitivity to the imple-
mentation and measure the impact. In particularly, we would like to study
whether any improvements due to context-sensitivity are still evident when
combined with a pruning criterion that bounds the permitted execution
time.

Pruning Pruning is the second part of DDP that we omitted from our
implementation. We did so to produce deterministic results. However, an
interactive environment is not suitable for analyses with unbounded run
times. Pruning solves the problem by arbitrarily terminating attempts to
obtain a more precise result if a timeout is reached (section 6.2).

Carefully compromised model In this thesis we have focussed on de-
veloping an approach to type inference that is provably sound for an ideal
language (chapter 4). Even when applying our work to a language that was
not ideal, we attempted to keep the result sound, sacrificing precision and
performance wherever necessary in order to do so and only compromising
soundness when the language semantics left us no alternative (chapter 5).
This, in part, was motivated by our experiences with existing development
environments for dynamically typed languages, which erred, instead, on the
size of maximum assistance but as a result do more harm than good.
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That said, when applying this analysis to a language of the size and
flexibility of Python, there is an argument to be made that relaxing the
soundness requirement in a few carefully chosen places to improve perfor-
mance or precision is necessary for a practical tool. The important point
is that these should be carefully chosen such that they lead to a large gain
in performance or precision while compromising only rarely used corners of
the language.
We are keen to explore one such compromise in the way we model class

inheritence in Python. Contraindication needs to aquire the names of the
declared methods of every loaded class, including any methods defined in
any superclasses. In Python, a class’s superclasses are arbitrary expressions
resolved at runtime as the module containing the class is imported. Al-
though we have never seen anything but named classes appear in the list,
this still poses a problem because that name is a variable like any other
and deciding what it contains, in general, requires flow analysis. Our im-
plementation of contraindication invokes flow analysis to do precisely that
and preliminary results (not included in this thesis) suggest that almost all
the extra flow analysis cost incurred by the contraindication phase of our
analysis is caused by superclass resolution.
We suspect the reason flow analysis is so expensive is that class names

are almost always global variables in Python and global variables can be
modified from any other module that imports the module in question. Our
flow analysis models this possibility faithfully by inspecting all those other
modules and analysing anywhere to which that global variable could flow
in order to find all its definitions. Needless to say, this is expensive and
the situation it models is unlikely: the module containing the class would
have to import another module that, possibly transitively, reached back
into the partially imported module and bind a value to the global variable
from which the class inherits. We suspect that ignoring the possibility that
these global variables can be modified from outside the module will lead to
a significant speed improvement for contraindication with no effect on the
correctness of the result.
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8.5 Languages

Our approach is sound for duck typed languages that satisfy our ideal pre-
requisites (section 4.12). But, as far as we are aware, there are no practical
languages that actually do so. Nevertheless, most of these prerequisites are
commonly assumed in the literature. In particular, the assumptions that
classes and features have fixed sets of features is critical not only for our
own analysis but also for the other applications of flow analysis described
in section 8.4.
The results of our manual inspection (table 7.3 on page 135) show that,

despite the compromises needed to use the approach with Python, the re-
fined types produced by our implementation are largely correct. Our com-
parison of type inference both with and without contraindication (table 7.1
on page 131) show that contraindication leads to a significant increase in
precision, particularly when performed using required features as the basis
of the frozen duck types. There are several other duck-typed languages with
similar semantics to Python, notably Ruby and Smalltalk, and we expect
they would benefit similarly.
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